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In this note, we propose a systematic effective field theory to treat the electrons in simple metals.
It is a more accurate and systematic than the GW approximation for the first-principle calculations
in real materials.
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I. INTRODUCTION

A. Microscopic Model

For clarity, we state our main results in the context
of a simple, explicit theoretical model; however, they are
more general and apply to other Fermi liquids with sin-
gular interactions. We consider a three-dimensional uni-
form electron gas (UEG) in a rigid and positively charged
background,

ĤUEG =
∑
kσ

(
k2

2m
− µ

)
ĉ†kσ ĉkσ+

1

2

∑
q6=0

4πe2

q2
ρ̂qρ̂−q, (1)

where ĉ/ĉ† are the annihilation/creation operator of an

electron, σ is the spin index, ρ̂q = 1√
V

∑
k,σ ĉ

†
kσ ĉk+qσ is

the density operator, m is the electron mass, and µ is
the chemical potential which is fixed by the electron den-
sity n. The q = 0 component of the electron-electron
Coulomb interaction is compensated by the electron-
background interaction, thus it should be removed.

We will use be using the action language in this pa-
per. In equilibrium, the thermodynamic properties can
be derived from the following partition function,

ZUEG =

∫
Dc̄Dce−SUEG[c̄,c], (2)

where c and c̄ are the Grassmann fields of the electrons,
and the action S is given by,

SUEG =
∑
kσ

g−1
k c̄kσckσ +

1

2

∑
q,q 6=0

vqρqρ−q, (3)

where the unbold symbol k = (k0,k) and q = (q0,q)
represent momentum-frequency vectors: the first com-
ponent (labeled by the subscript 0) is the (Matsubara)
frequency, while the remaining components are the mo-
mentum vector.

The dispersion of the bare propagator for the electron
is encoded in the bare propagator,

gk = − 1

ik0 − k2

2m + µ
. (4)

The bare interaction between the electrons is the
Coulomb repulsion vq = 4πe2/q2. It couples the
momentum-frequency dependent density operator,

ρq =
1√
βV

∑
k,σ

c̄kσck+qσ, (5)

where the inverse temperature β in the prefactor is from
the Fourier transform in the imaginary-time direction.

B. Electron Gas as a Charged Fermi Liquid

At zero temperature, the UEG is dictated by a sin-
gle dimensionless parameter called Wigner-Seitz radius

rs =
(

3
4πn

)1/3
/a0, where a0 is the Bohr radius. The rel-

ative strength of the Coulomb interaction is proportional
to 1/rs which becomes perturbative in the high density
limit. The existing Quantum Monte Carlo (QMC) sim-
ulations the UEG is a charged Fermi liquid at least up
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rs Z m∗/m F−
0 F+

0

1 0.8725(2) 0.955(1) -0.171(1) -0.209(5)
2 0.7984(2) 0.943(3) -0.271(2) -0.39(1)
3 0.7219(2) 0.965(3) -0.329(3) -0.56(1)
4 0.6571(2) 0.996(3) -0.368(4) -0.83(2)

TABLE I: Variational DiagMC computed values of the
quasiparticle renormalization amplitude Z, effective
mass m∗/m, and the Landau parameters F a0 , F s0 for
various values of the density parameter rs, together

with the estimated error.

FIG. 1: The static dielectric function becomes negative
near rs ≈ 5.3. The variational diagrammatic Monte

Carlo (VDiagMC) data for rs = 4 is adapted from Ref.
1, while the diffusive quantum Monte Carlo (DMC)

data for rs = 4, 6, 10 are adapted from Ref. 2.

to rs ∼ 10. For simple metals, the effective rs is about
1 . rs . 5. For example, the rs for the akali metals
lithium, sodium, potassium are roughly 3, 4, 5, respec-
tively. The Coulomb interaction is not perturbative any-
more for rs > 1, meaning the electrons in these metals
receive nontrivial renormalization near the Fermi surface.

In Fermi liquids, the low-energy dynamics of the quasi-
particles is fixed by a handful of renormalized parame-
ters, including the wave-function renormalization factor
Z, effective mass m∗, and the Landau parameters F for
the quasiparticle interactions (see Appendix A for a more
detailed introduction). These parameters have been cal-
culated with controlled error bars up to rs = 4 using vari-
ational diagrammatic Monte carlo method (VDiagMC)
(see Tab. I). These renormalized parameters completely
determines many properties of the system, e.g., com-
pressibility and susceptibility.

A particular interesting feature of the UEG is that the
angle-averaged spin-symmetric Landau parameter F+

0

approaches to −1 at rs ≈ 5, which corresponds to the

r0 � 1/kF

r � r0

r0 � 1/kF

FIG. 2: Interaction between two clouds of test charge.
The size of the cloud must be bigger than the inverse

Fermi momentum. The separation of two clouds should
be much larger than the size of the clouds.

density of akali metals. The system becomes bizarre in
this limit. For example, the static dielectric function be-
comes negative in the limit q→ 0 when F+

0 < −1,

1

εq

q→0−−−→ (1 + F+
0 )q2

(q∗TF )2 + (1 + F+
0 )q2

+O(q4), (6)

where the q∗TF =
√

4πe2N∗F with N∗F = m∗

m NF the den-
sity of state of the quasiparticle on the Fermi surface.

Note that the negative dielectric function is compatible
with the stability condition of the ground state3,

1

εq
< 1, (7)

which means that the system could still be a stable Fermi
liquid at rs ≈ 5.3.

Nevertheless, the negative dielectric causes physical
consequences. As shown in Fig.2, consider two clouds
of test charges (say, two large impurities). The size of
the clouds r0 should be much larger than 1/kF so that
the short-wave-length effects such as the Fridel oscilla-
tion is suppressed. When the separation of the clouds
are much larger than r0, their static interaction is given
by vq/εq in the limit q � kF , which is attractive for
rs . 5.3, and repulsive for rs & 5.3. Right at the density
with F+

0 = −1, two test charge clouds are nearly free. In
simple metals, the electrons provide the cohesive energy
to bind the ions. The suppression of the test charge at-
traction is significant in akali metal, which may be strong
enough to modify the lattice structure.

C. Quasiparticle Interaction

The nontrivial physics described in the above subsec-
tion originates from the collision process of two quasi-
particles. The scattering amplitude is the probability
that a given collision process happens. We will call the
quasiparticle scattering amplitude as the quasiparticle in-
teraction. Assume two quasiparitcles with momentum-
frequency k1 and k2 are scatters to k3 and k4 = k1 +
k2− k3, the quasiparticle interaction is given by the one-
particle irreducible (1PI) vertex function z2Γ4

k1,k2;k3,k4
reweighted by the wave-function renormalization factor.

In a Fermi liquid, we expect that the quasiparticle in-
teraction has a fast component and a slow component
separated by the time scale 1/EF . The fast interaction
comes from the bare Coulomb repulsion and high order
quantum corrections under the length scales 1/kF . In
addition to the fast process, two separated quasiparticles
may also interact indirectly through the particle-hole ex-
citations in the system, which generates a slow effective
interaction.

The above consideration can be made exact for the
forward scattering process. Indeed, one of the main pre-
dictions of Fermi liquid theory is that the forward scatter-
ing amplitudes on the Fermi surface are completely fixed
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the Fermi liquid parameters. In particular, the angle-
averaged amplitude on the Fermi surface is given by,

z2Γ4
k1,k2;k1−q,k2+q −−−→q→0

vq + f+
0

1− (vq + f+
0 )Π∗0

+
f−0

1− f−0 Π∗0
σσ′,

(8)
where the symbol Γ4 means projecting the incom-
ing momentum-frequency to the Fermi surface k1 =
(0, kFn1) and k2 = (0, kFn2), then average over the ori-
entation of the unit vectors n1 and n2. The first term is
the spin symmetric interaction, while the second term is
spin asymmetric.

The norminators vq +f+
0 and f−0 in the scattering am-

plitude are the fast interaction. Except the Coulomb re-
plusion, they are regular functions parameterized by the
Landau parameter in the limit q → 0: f±0 → F±0 N

∗
F /z

2.
The fast interaction is then renormalized by a series of
particle-hole pairs. The resummation of the particle-
hole pairs generates the denorminators, where Π∗0(q) =
m∗

m Π0(q) with Π0(q) the momentum-frequency depen-
dent Lindhard function. Note that Π∗0(q) is nonana-
lytic in the limit q → 0 due to the charge conservation:
Π∗0(q0 = 0,q → 0) = 0, while Π∗0(q0 → 0,q = 0) = 0.
As a result, the quasiparticle interaction in the forward
scattering process has two distinct types of singularity:
one is from the Coulomb repulsion, another is from the
Lindhard function.

Landau Fermi liquid theory only specifies the forward
scattering process. In Ref. 4, Kukkonen and Overhauser
propose to use a similar form as the Eq.(8) to parame-
terize the quasiparticle interactions for generic momenta
and frequencies,

RKOq =
vq + f+

1− (vq + f+)Π∗0
+

f−

1− f−Π∗0
σσ′ + u, (9)

where the counterterm u should be included because
some high-order quantum effects are doubly counted in
the direct and the exchange interactions. The parameters
f± and u need to be carefully chosen to best approximate
the physical scattering amplitude,

z2Γ4
k1,k2;k1−q,k2+q ≈ RKOq −RKOq−k1+k2 (10)

up to the length scale 1/kF and the time scale 1/EF .
The original Kukkonen-Overhauser (KO) formulation is
a motivated by a phenomenological consideration based
on the linear response theory. In literature, f± are pa-
rameterized as the exchange-correlation kernel f±xc which
can be extracted from the density-density and spin-spin
response functions (See Fig. ??) and the counterterm is
set as u = −f+ − f−. Note that such parameterization
doesn’t reproduce the Landau Fermi liquid theory Eq.(8)
in the forward scattering process. The deviation could be
significant near rs ≈ 5.3.

There are general solutions to fix this problems:

• Systematic renormalization condition approach:
One first choose the parameters f± which fixes the

ansatz for the non-analytic part of the scattering
amplitude. Then one can use the following renor-
malization condition to fix the counterterm u,

u ≡
(
z2Γ4

k1,k2;k1−q,k2+q

− vq + f+
0

1− (vq + f+
0 )Π∗0

+
f−0

1− f−0 Π∗0
σσ′ + exch.

)
k1=k2=q=0

where we first take the physical scattering am-
plitude, subtracting the leading non-analytic con-
tributions in both direct and exchange channels,
then keep the most important constant term of
the remaining contributions. This makes sense be-
cause the remaining contributions are mostly regu-
lar function within the entire Fermi volume.

• Approximation approach: According to Fermi liq-
uid theory, the regular part of the scattering ampli-
tude is exactly marginal in the RG sense. It means
even if our ansatz slightly different from the Lan-
dau Fermi liquid theory, the multiloop corrections
should be able to fix such small discrepency. With
some numerical experiments, we find the following
simple ansatz are quite close to the Landau Fermi
liquid theory,

Rq =
vq + f+

0

1− (vq + f+
0 )Π∗0

− f+, (11)

where the parameters f+
0 is the physical Landau

parameter.

In the following, we will use the ansatz Eq.(11) to
construct the renormalized perturbation theory.

II. RENORMALIZED FIELD THEORY

A. Effective Action

In this subsection, we introduce a renormalized field
theory based on the quasiparticle interaction ansatz pro-
posed in the last subsection. It is the minimal theory
that accounts for the essential vertex corrections for the
physics near rs ≈ 5.3.

The attempt to describe Fermi liquid with a modern
effective field theory approach was pioneered by Polchin-
ski, Shankar and many other authors in Ref.5–9). Here
we further develop this idea. More specifically, we would
like to write down a local EFT of a (charged Fermi liquid)
which allows us to systematically derive physical observ-
ables. Some requirements are the following,

1. The degrees of freedom of the EFT should be the
quasiparticle instead of the bare electrons. The
relation between our EFT and the jellium model
(Eq.(1)) is similar to that between the renormal-
ized quantum electrodynamics (QED) and the bare
theory defined above the Plank scale.
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2. The EFT should provide a unbiased description of
the bare model in Eq.(1). That means we can
not simply drop corrections as one usually did in
condensed matter field theory. By systematically
solving the EFT, one should be able to calculate
the physical observable of the jellium model with a
controlled estimation of errors. This is important
because we want the theory to be useful as a first
principle technique for real material calculations in
the future.

3. The EFT should keep all the symmetry (crossing
symmetry, global U(1) symmetry, Galilean symme-
try, etc.) of the jellium model in Eq.(1). The global
U(1) symmetry implies the charge conservation
law, which is implemented as the Ward–Takahashi
identity in quantum correlators. Many of the renor-
malized perturbation theory violates such identity
(for example, the polarization calculated from the
fully self-consistent GW approximation). We want
the perturbative treatment of our EFT to imple-
ment the Ward–Takahashi identity order by order.

The minimal effective field theory that meets all three
requirements are given by,

SR =
∑
kσ

g−1
R;k c̄

R
kσc

R
kσ +

1

2

∑
qσ,q6=0

Rqρ
R
qσρ

R
−qσ, (12)

where c̄R and cR are the Grassmann fields of quasiparti-
cles. They are related to the bare electron fields c̄ and c
in Eq. (3) via a rescaling,

c̄kσ =
√
zc̄Rkσ, ckσ =

√
zcRkσ, (13)

where z is the wave-function renormalization factor.
The quasiparticle in the minimal theory has a renor-

malized propagator,

gR;k = − 1

ik0 − k2

2m∗ + µR
, (14)

where the mass is renormalized to the effective mass m∗,
and the chemical potential is chosen so that gR gives the
electron density. Since we also rescale the quasiparticle
fields with the factor

√
z, the quasiparticle spectral den-

sity has weight one.
Since the charge fluctuations dominate the physics for

intermediate rs, it is sufficient for us to only include the
quasiparticle interaction only couples the density degrees
of freedom,

Rq =
vq + f+

1− (vq + f+)Π∗0(q)
− f+, (15)

where Π∗0(q) = m∗

m Π0(q) with Π0(q) the momentum-
frequency dependent Lindhard function. The parame-
ters f+ is the spin-symmetric Landau parameter. Such
interaction reduces to the Landau Fermi liquid theory

in the forward scattering channel up to a small regular
correction. The tree level of our minimal theory already
captures the nontrivial physics near rs = 5.3.

In principle, the system also develops effective spin-
spin interaction between the quasiparticles. Our minimal
model doesn’t include the spin-spin quasiparticle inter-
action because they are rather small and can be treated
perturbatively with high-order diagrams.

B. Renormalized Perturbation Theory

In later sections, we will show how to use Feynman
diagrammatic technique to systematically calculate the
renormalized field theory. We will follow the standard
procedure of renormalization technique in quantum field
theory. A detailed introduction could be found the text-
books of quantum field theory, for example, Ref. 10.

1. Counterterms

We first connect the renormalized action to the bare
action in Eq.(3). By rescaling the electron fields in the
bare action to the quasiparticle fields using Eq.(13), we
obtain

SUEG = z
∑
kσ

g−1
k c̄Rkσc

R
kσ +

z2

2

∑
qσ,q 6=0

vqρ
R
qσρ

R
−qσ. (16)

The bare propagator and interaction still appear in the
action, but they can be eliminated as follows,

SUEG = SR +
∑
kσ

δg c̄
R
kσc

R
kσ +

1

2

∑
qσ,q6=0

δRρ
R
qσρ

R
−qσ. (17)

The dominating term SR only involves the renormalized
parameters. The remaining terms are known as the coun-
terterms that have absorbed the shifts between the bare
parameters and the physical parameters. One can show,

δg = z · g−1
k − g

−1
R;k ≡ −δzik0 + δm

k2

2m
− δµ, (18)

where,

δz = z − 1, δm = z − m

m∗
, δµ = zµ− µR. (19)

In addition, the counterterm for the renormalized inter-
action is given by

δR = z2vq −Rq. (20)

2. Renormalization Conditions

The definitions in Eq.(19) and (20) are not useful un-
less we give precise definitions of the renormalized pa-
rameters.
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The renormalized parameters are defined through
physical observables in terms of two-point and four-point
vertex functions of the quasiparticle. The two-point ver-
tex function can be derived from the fully dressed prop-
agator of the quasiparticle,

GRk ≡
〈
T ĉR(τ1x1)ĉ†R(τ2x2)

〉
k

=
1

z

〈
T ĉ(τ1x1)ĉ†(τ2x2)

〉
k
,

(21)
so that the two-point vertex function of the quasiparticle,

Γ2,R
k = (GRk )−1. (22)

According to the Landau Fermi liquid theory, Γ2
k

should be analytic in the vicinity of the Fermi surface,

Γ2,R
k → −ik0 −

kF
m∗
· (k− kF ) +O(ω2

n, (k− kF )2)

→ −ik0 −
k2

2m∗
+ EF +O(ω2

n, (k− kF )2)

The above equation leads to the following renormal-
ization conditions that implicitly fixes the renormalized
parameters z, m∗ and µR. For convenience, we introduce
the quasiparticle self-energy

ΣRk ≡ Γ2,R
k − gR;k (23)

1. The renormalized chemical potential is fixed by,

µR ≡ Re ΓR;2
(0,kF ) = EF → Re ΣR(0,kF ) = 0 (24)

2. The wave-function renormalization factor z is im-
plicitly fixed by the equation,

∂

∂k0

(
Im ΓR;2

(0,kF )

)
= −1→ ∂

∂k0

(
Im ΣR(0,kF )

)
= 0, (25)

3. The effective mass is fixed by both the small mo-
mentum and the frequency behavior of the self-
energy near the Fermi surface,

m

m∗
= − m

kF

∂

∂k

(
Re ΓR;2

(0,kF )

)
→ ∂

∂k

(
Re ΣR(0,kF )

)
= 0.

(26)

The remaining renormalized parameter f+ is the Lan-
dau parameter of the quasiparticle interaction. It can
be extracted from the two-quasiparticle scattering am-
plitude. More specifically, from the connected two-body
Green’s function of the quasiparticle,

Gc,Rk1k2;k3k4
≡
〈
T ĉR(τ1x1)ĉR(τ2x2)ĉ†R(τ3x3)ĉ†R(τ4x4)

〉c
k1k2k3k3

,

(27)
one can derive the 4-point 1PI vertex function, or
the scattering amplitude, by amputating the two-body
Green’s function with the one-quasiparticle propagator,

Γ4,R
k1k2;k3k4

≡ Gc,Rk1k2;k3k4
/
[
GRk1G

R
k2G

R
k3G

R
k4

]
. (28)

The parameter f+ is fixed to the spin-symmetric Lan-
dau parameter with l = 0,

f+ =
〈

Γ4,R
k1,k2;k1−q,k2+q

〉
Ω
− vq. (29)

where the symbol 〈Γ4〉Ω is an operation with three
steps: i) project the incoming momentum-frequency to
the Fermi surface k1 = (0, kFn1) and k2 = (0, kFn2), ii)
then send q → 0 along the trajector q0 � v∗F |q|, iii) and
finally average over the orientation of the unit vectors n1

and n2.
The equations Eq. (24),(25), (26) and (29) give the

renormalization conditions to fix all renormalized param-
eters.

3. Renormalized Perturbation Theory

We will use a systematic perturbation technique to cal-
culate the renormalized action Eq.(17). The procedure
is known as renormalized perturbation theory.

The overall idea is to express a physical observable as
a power series in the renormalized propagator and inter-
action. We may keep track of the perturbation order by
associating the interaction with

Rq → Rqξ, (30)

where ξ should be set to be one in the end of the calcu-
lation.

To formulate a renormalized expansion, we first need
to reparameterize the counterterms in Eq.(19) and (20)
with the renormalized parameters. They should be power
series in the renormalized propagator gR and the inter-
action Rq. We first assume they can be expanded as,

z = 1+

∞∑
n=1

zn(gR, Rq)ξ
n ↔ δz =

∞∑
n=1

zn(gR, Rq)ξ
n, (31)

where z(n)(gR, Rg) is a multilinear functional of the
renormalized propagator and the renormalized interac-
tion with n is the number of interaction lines. They are
sum of renormalized Feynman diagrams.

Similarly,

m

m∗
= 1 +

∞∑
n=1

mn(gR, Rq)ξ
n ↔ δm =

∞∑
n=1

m̃n(gR, Rq)ξ
n,

(32)
where m̃n = zn −mn.

Since we are not interested in the bare chemical poten-
tial of the system, we only need the power series for the
chemical potential counterterm.

δµ =

∞∑
n=1

µn(gR, Rq)ξ
n (33)
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Rqξ δR;nξ
n

gR δg;nξ
n

FIG. 3: Feynman rules for the renormalized field theory
of the electron gas.

Moreover, we need the power series of the Landau pa-
rameter,

f+ =

∞∑
n=1

fn(gR, Rq)ξ
n. (34)

To derive power series for the interaction counterterm
δR, one first needs to find the power series for the bare
interaction vq in Rq. According to the definition of the
renormalized interaction Eq.(15),

vq =
Rq + f+

1 + (Rq + f+)Π∗0
− f+, (35)

Plugging it into Eq.(20) and expanding in a power series
in Rq, we obtain

δR = z2

(
Rqξ + f+

1 + (Rqξ + f+)Π∗0
− f+

)
ξ −Rqξ (36)

=
[
2z1Rq − (Rq + f1)2Π∗0

]
ξ2 + ... (37)

The physical meaning of terms will be clear later.

4. Renormalized Feynman Diagrams

Now we have all components to formulate the renor-
malized perturbation theory in terms of renormalized
Feynman diagrams. The building blocks of the diagrams
are given in Fig.(3). By organizing the diagrams in num-
ber of renormalized interactions (namely, in order of ξ),
we derive the first two orders of renormalized Feynman
diagrams for the quasiparticle self-energy and scattering
amplitudein in Fig.4 and Fig.5.

We first discuss the first order diagrams in Fig.4. They
give the leading order estimation of the renormalized
parameters. Fig.4(a) is for the 4-point vertex function

Γ4,R
k1,k2;k1−q,k2+q. Averaging it on the Fermi surface using

Eq.(29) gives the leading order of the Landau parameter,

f1 = −〈R−q+k2−k1〉Ω . (38)

Note that the direct interaction doesn’t contribute to f1

because 〈Rq〉 = vq and the bare Coulomb interation is
not part of the Landau parameter.

Rq

k1 k2

k1 − q k2 + q

k1 k2

k1 − q k2 + q

−R−q+k2−k1

+

(a)

Σ1 δ1
g

+

(b)

FIG. 4: The first order renormalized diagrams and their
counterterms. a) Quasiparticle 4-point vertex function.

b) Quasiparticle self-energy. The Hartree diagram is
neglected since it merely shifts the chemical potential.

The leading order quasiparticle self-energy is shown in
Fig.(4)(b). It is the first example of diagrams that comes
with a counterterm δ1

g . The sum of the diagram and the
counterterm should satisfy the renormalization condition
Eq.(24), (25) and (26). We conclude the leading order
correction to the z-factor is

z1 =
∂ Im Σ1

∂k0

∣∣∣∣
(0,kF )

, (39)

where Σ1 is the Fock diagram (the left diagram in
Fig.(4)(b)).

Similarly, the effective mass counterterm should be

m̃1 = − m
kF

∂ Re Σ1

∂k

∣∣∣∣
(0,kF )

. (40)

The leading order correction to the effective mass is

m1 = z1 + m̃1. (41)

In addition, the chemical potential counterterm should
remove the chemical-potential shift from the self-energy
diagram, therefore,

δµ1 = Re Σ1(0, kF ) + m̃1
k2
F

2m
. (42)

The above procedure can be systematically performed
for the second order corrections. As shown in Fig.5, the
second order Feynman diagrams come with sophisticated
counterterms. For the 4-point vertex function diagrams,
the interaction counterterm δ2

R appears for the first time.
For clarity, we split δ2

R into three parts, each of which is
paired with a renormalized Feynman diagram. For ex-
ample, the diagram γ1d

2 , which is a left vertex correction
diagram, is paired with the counterterm z1Rq−f1Π∗0Rq.
The physical meaning is clear: z1Rq canecels out the
regular contribution in the left vertex correction, while
f1Π∗0Rq cancels out the non-analytic contribution from a
particle-hole pair.
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+γ1d
2

(z1 − f1Π∗0)Rq

Rq(z1 − f1Π∗0)

γ2d
2 +

+
γ3d

2

−f1Π∗0f1

γ4d
2

(a)

Σ1
2

Σ3
2

δ2
R

Σ2
2

δ1
g

Σ4
2

δ2
g

(b)

FIG. 5: The second order renormalized diagrams and
their counterterms. a) Quasiparticle 4-point vertex

function. Each diagram and counterterm has an
exchange counterpart by swapping the two outgoing

quasiparticles. The bubble diagram is completely
canceled out by the counterterm, thus not included. b)

Quasiparticle self-energy.

Using the renormalization condition in Eq.(29), we de-
rive the second-order correction to the Landau parame-
ter,

f2 =
〈
γ3d

2 + γ4d
2 + γ1e

2 + γ2e
2 + γ3e

2 + γ4e
2 + CT

〉
Ω
. (43)

Note that only the proper diagrams (one-interaction-

irreducible) diagrams contribute to f+.

The second-order self-energy diagrams and their coun-
terterms are shown in Fig.5(b). They fix the corrections
z2, m2 and µ2. We will not repeat the analysis here.

Appendix A: Charged Fermi Liquid Theory

Here we review Landau theory of the charged Fermi
liquid.

1. Hedin Equations

The electron-electron effective interaction is cap-
tured by the one-particle-irreducible vertex function
Γ4(k1, k2; q) where k1 = (k1, ω1) and k2 = (k2, ω2)
are the incoming momenta/frequencies of the two scat-
tered electrons, and q = (q,Ω) is the transfer momen-
tum/frequency between two electrons. For simplicity, we
omit the spin index.

We first analysis the analytic structure of the vertex
function Γ4 in the metallic phase. We expect three dif-
ferent pieces

Γ4 = ΓW + Γph + Γirr (A1)

• The first piece is the one-interaction-reducible di-
agrams ΓW (k1, k2; q) = Γ3(k1, q) · Wq · Γ3(k2, q),
where W is the renormalized bosonic propagator
and Γ3 is the one-interaction-irreducible 3-vertex.
It diverges as 4πe2/q2 in the limit q → 0, q/Ω→ 0.

• The second piece Γph(k1, k2; q) consists of the di-
agrams which are one-interaction irreducible but
particle-hole reducible. In these diagrams, there
is at least one pair of electron propagators looks
like GkGk+q. Integrating out the internal momen-
tum/frequency k, these pairs take different limits
as q → 0 and Ω → 0. As a result, Γph(k1, k2; q) is
finite but non-analytic in the limits q,Ω→ 0.

• The third piece Γirr(k1, k2; q) are the one-
interaction and particle-hole irreducible diagrams.
It is analytic in the limits q,Ω→ 0.

• It is sometimes convenient to further divide Γirr
into three parts Γirr = ΓexW + Γexph + δΓirr, where
the first two terms are the exchange counterparts
of ΓW and Γph.

The renormalized electron propagator G, dressed in-
teraction W and the one-interaction-irreducible 3-vertex
function Γ3 can be calculated with the Hedin equations
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FIG. 6: Particle-hole pair.

for , respectively,

Gk = (g−1
k − Σk)−1, (A2)

Wq = (v−1
q −Πq)

−1, (A3)

Σk = −
∑
q

GkWqΓ3(k, q), (A4)

Πq =
∑
q

GkGk+qΓ3(k, q), (A5)

Γ3(k, q) = 1 +
∑
k′

(Γph + Γirr)kk′q ·Gk′Gk′+q. (A6)

We analysis the analytic structure of the above corre-
lation/vertex functions.

2. Green’s function

Near the Fermi surface, the electron propagator can be
well approximated with a renormalized free propagator.
Therefore, to study low energy physics, it makes sense to
write the propagator as,

Gk,iωn =
Z

iωn − vF (k − kF )
+ correction.. (A7)

or in the imaginary-time representation with τ ∈ [0, β),

Gk,τ = Z(1− nk)e−vF (k−kF )τ + correction.. (A8)

where vF is the physical Fermi velocity, and kF is the
physical Fermi momentum.

The singular part of the propagator leads to a
non-analytic contribution in the particle-hole pair (see
Fig.??),

Gk,τ2−τ1Gk+q,τ ′4−τ ′3 =

− Z2nk(1− nk+q) · e−(εk+q−εk)(τ2−τ1)δτ1−τ4δτ2−τ3
+ correction. (A9)

At low temperature and with small transfer momen-
tum/frequency (q, iΩ), the internal momentum k will be
confined near the Fermi surface and the first term will be
simplified as,

(GG)q,iΩ = Kq,iΩ + correction, (A10)

where the kernel,

Kk̂;q,iΩ =
Z2k̂ · q

iΩ− vF k̂ · q
. (A11)

3. Forward-Scattering Electron-Electron
Interaction Γ4

We now give the analytic structure of the electron-
electron interaction near the Fermi surface. We first de-
fine the 4-vertex in the limit q,Ω → 0 and q/Ω → 0
as,

ΓΩ
4 (k1, k2;q) =

1

Z2
vq + ΓΩ

p+i(k1, k2), (A12)

where Γp+i is an abbreviation of Γph + Γirr. The
first term is from the one-interaction-reducible term
ΓW (k1, k2; q) = Γ3(k1, q) · Wq · Γ3(k2, q). Due to the
charge conservation11, in this limit, Wq = vq and
Γ3(k1, q) = 1/Z.

The forward-scattering full vertex function is given by,

Γ4(k1, k2;q, iΩ) = ΓΩ
4 (k1, k2;q)

+
Z2k2

F

(2π)D

∫
Ωk

ΓΩ
4 (k1, k;q)

k̂ · q
iΩ− vF k̂ · q

Γ4(k, k2;q, iΩ).

(A13)

where the momentum/frequency k = (kF , iω0) is on the
Fermi surface.

If we only consider the one-interaction-irreducible com-
ponents,

Γp+i(k1, k2;q, iΩ) = ΓΩ
p+i(k1, k2)

+
Z2k2

F

(2π)D

∫
Ωk

ΓΩ
p+i(k1, k)

k̂ · q
iΩ− vF k̂ · q

Γp+i(k, k2;q, iΩ).

(A14)

In the limit q,Ω→ 0 and Ω/q→ 0, the 4-vertex func-
tion corresponds to the forward scattering amplitude.
Again, it consists of one-interaction-reducible part and
the irreducible part.

The one-interaction-reducible contribution
Γ3
q,iΩWq,iΩΓ3

q,iΩ, where the 3-vertex Γq,iΩ
3 is given

in Eq.(A28) and the dressed interaction Wq,iΩ is given
in Eq. A27. Note that this term is a function of the
transfer momentum/frequency only.

The one-interaction-irreducible part is,

Γqp+i(k1, k2) = ΓΩ
p+i−

Z2m∗kF
(2π)D

∫
Ωk

ΓΩ
p+i(k1, k)Γqp+i(k, k2),

(A15)
where m∗ is the effective mass of the quasiparticle.

For fermions carrying S = 1/2,

Γp+i = Γ+
p+i + Γ−p+iσ1 · σ2, (A16)

where the first term is spin symmetric, while the second
term is antisymmetric. Then Eq.(A15) decouples into,

Γq,±p+i(k1, k2) = ΓΩ,±
p+i−

2Z2m∗kF
(2π)D

∫
Ωk

ΓΩ,±
p+i (k1, k)Γq,±p+i(k, k2),

(A17)
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If both k1, k2 are on the Fermi surface, ΓΩ
4 (k1, k2) cor-

responds to the Landau quasiparticle interaction (for the
effective Hamiltonian formulation),

Z2m∗kF
π2

ΓΩ
p+i(k1, k2) =

∑
l

(2l+1)(F+
l +F−l σ1·σ2)Pl(cos θ12),

(A18)
while Γq4(k1, k2) corresponds to the scattering amplitude,

Z2m∗kF
π2

Γqp+i(k1, k2) =
∑
l

(2l+1)(A+
l +A−l σ1·σ2)Pl(cos θ12).

(A19)
In three-dimensions D = 3, use the addition formula,

Pl(cos θ12) =
4π

2l + 1

l∑
m=−l

Ylm(k̂1)Y ∗lm(k̂2), (A20)

where the spherical harmonics normalizes to one,∫
Ωk̂

Ylm(k̂)Y ∗l′m′(k̂) = δl,l′δm,m′ . (A21)

Eq.(A17) simplifies to,

A±l = F±l − F
±
l A
±
l , (A22)

which has a simple solution,

A±l =
F±l

1 + F±l
(A23)

4. Dressed Interaction W

The physical polarization has a similar non-analytic
structure in the limit q, iΩ→ 0,

Πq,iω = ΓΩ
3 Kq,iωΓq3(q, iω) =

1

Z2
Kk̂;q,iω·(1−ΓΩ

p+i·Kq,iω)−1

k̂

(A24)

where the 3-vertex ΓΩ,q
3 is given in Eq.(A28), and the

4-vertex ΓΩ
ph+irr is the one-interaction-irreducible quasi-

particle interaction, which is given by Eq.A12. There are
two interesting limits,

Πq,iω =

{
0, q = 0, iω → 0
−n2κ, q→ 0, iω = 0

(A25)

where n is the electron density and κ is the proper charge
compressibility.

Use Eq.(A18), the proper compressibility has a simple
expression,

κ

κ0
=
m∗

m

1

1− ΓΩ
p+i ·Kq,iω

=
m∗

m

1

1 + F+
0

(A26)

The dressed interaction, or the renormalized bosonic
propagator, is given by,

Wq,iω =

{
vq, q = 0, iω → 0
vq/(1 + vqn

2κ), q→ 0, iω = 0
(A27)

where κ is referred as the proper compressibility of the
electron gas.

5. 3-Vertex Γ3

The behavior of the 3-vertex in the limit q,Ω → 0
is fixed by the Ward identity associated with the charge
conservation (Note that some approximation may violate
it)

Γ3(k, iω;q, iΩ) ={
ΓΩ

3 = ∂G−1

∂iωn
= 1

Z , q = 0, iΩ→ 0

Γq3 = (1− ΓΩ
p+i ·Kq,iω)−1 · ΓΩ

3 ,q→ 0, iΩ = 0

(A28)

With Landau parameter, Γq3 has a simple expression,

Γq3 =
1

Z

1

1 + F+
0

. (A29)

One may refer to Ref. 11 for a detailed derivation. The
3-vertex has a remarkable feature in the forward scatter-
ing channel: it is independent of the incoming momen-
tum/frequency of the electron (not only the amplitude,
but also the angle).

Appendix B: Microscopic Theory of the
Kukkonen-Overhauser Interaction

In this section, give an exact microscopic theory of
the Kukkonent-Overhauser (KO) ansatz for the electron-
electron interaction. Our theory is an application of the
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renor-
malization scheme in a charged Fermi liquid. With a
renormalization scheme, one could absorb the dominat-
ing contributions that arise in perturbative calculations
beyond the leading order and derive a renormalized cou-
pling. We find that the KO interaction corresponds
to a minimal subtraction renormalizaiton scheme (MS
scheme) where the renormalized interaction only absorbs
the singular part (from the particle-hole excitations) in
the 4-point vertex function.

The Original form of the Kukkonen-Overhauser ansatz
of electron-electron interaction is phenomenologically
motivated by the linear response theory4. Later, Vignale
and Singwi attempt to derive the Kukkonen-Overhauser
ansatz from a microscopic theory12 based on many-body
perturabtion theory. However, their theory resorts to
two approximations: i) the Landau parameter is assumed
to come from the particle-hole-irreducible vertex func-
tion Ĩ only; ii) the vertex function Ĩ is further assumed
to depends only on the momentum transfer along the
particle-hole channel (“local” approximation). The first
approximation neglects the regular contributions from
the particle-hole reducible diagrams to the Landau pa-
rameter, while the second approximation neglects the
dependence of the vertex function Ĩ on the external mo-
menta and frequencies other than the transfer momen-
tum.
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We now derive an exact microscopic theory without
making the above approximations. The vertex function
of a charged Fermi liquid has two singular contributions:
i) singularity from the long-range Coulomb repulsion,
and ii) singulary from the particle-hole pair. The renor-
malizaiton scheme should take care of both.

Following the Fermi liquid theory, we split the 1PI 4-
point vertex function Γ4 into a particle-hole-irreducible
vertex function Γphi and the remaining reducible part,

Γ4
k1k2;q = Γik1k2;q +

∫
k

Γik1k;qGkGk+qΓ
4
k+q,k2;q, (B1)

where the label include momentum, frequency and the
spin index. The propagators G are the fully dressed.

For simplicity, we will write the above equation in a
more compact way,

Γ4 = Γi + Γi ·G2 · Γ4, (B2)

where the dot A ·B means a convolution between A and
B with one incoming and one outgoing legs. If A and B
only depends on the transfer momentum/freuency, then
· is the conventional multiplication.

Now we define an operator [...] to separate a vertex
function into a dominating and easy-to-resum part and
the remaining corrections,

Ok1k2;q ≡ [Ok1k2;q] + δOk1k2;q, (B3)

where [δOk1k2;q] = 0.
The specific definition of the operator depends on the

type of the vertex functions, but it should satify a set of
general rules so that one can easily resum the dominating
parts later,

1. [O] should be a function of the transfer momen-
tum/frequency q only.

2. If O only depends on the transfer momen-
tum/frequency, then it maps to itself [Oq] = Oq.
Combining with the firist rule, we have [[Oq]] =
[Oq].

3. Additivity [O1 +O2] = [O1] + [O2].

4. Homogeneity [A ·Bq ·C] = [A]Bq[C]. By setting A
or C to be unity, one obtains a specialized homo-
geneity [A · Bq] = [A]Bq or [Bq · C] = Bq[C]. The
homogeneity and the additivity ensures the opera-
tor [...] is a linear map.

Now we derive the dominating part of Γ4 use the above
relations. Apply the operator on both the left and the
right side of Eq.(B1), we obtain

[Γ4] = [Γi] + [Γi ·G2 · Γ4]. (B4)

Splitting G2 in Eq.(B4) into two parts [G2] and δG2 ≡ φ,
we obtain

[Γ4] = [Γi] + [Γi][G2][Γ4] + [Γi · φ · Γ4]. (B5)

One can do that same for the G2 in Eq.(B1), we obtain

Γ4 = Γi + Γi · [G2] · Γ4 + Γi · φ · Γ4. (B6)

These two equations form a closed self-consistent loop
to derive [Γ4]. By substituting the Γ4 in the third term
on the right hand side of Eq.(B5) again and again with
Eq.(B6), we obtain

[Γ4] = ΓΩ + ΓΩ[G2][Γ4], (B7)

where

ΓΩ
q ≡ [Γi] + [Γi · φ · Γi] + [Γi · φ · Γi · φ · Γi]... (B8)

Once we know ΓΩ, we can derive the resummed [Γ4],

[Γ4] =
ΓΩ
q

1− ΓΩ
q [G2]

(B9)

Now we give the explict defintion of the projection op-
erator [...] for different object. For the particle-hole prop-
agator, the dominating singular part can be parameter-
ized as,

[G2] ≡ [GkGk+q] ≡ z2Π∗0(q)
1

4π
δ(|k| − kF )δ(k0), (B10)

where the phase factor enforces the momentum variable
on the Fermi surface. Then Eq.(B9) can be further sim-
plied to

[Γ4] =
ΓΩ
q

1− z2ΓΩ
q Π∗0(q)

(B11)

We now investigate the vertex function ΓΩ. It’s lead-
ing contribution, namely the vertex Γphi, is free of the
singularity caused by the particle-hole pair. However, it
contains a singular bare Coulomb interaction. Therefore,
we further split it into an improper part and a proper
part,

Γi = vq + Γi+p, (B12)

where the proper part is regular for the entire Fermi vol-
ume.

By splitting the Γphi into two parts in Eq.(B8), we
derive,

ΓΩ = ΓΩ
3 vqΓ

Ω
3 + ΓΩ

prop (B13)

where

ΓΩ
3 ≡ 1 + [φ · Γi+p] + [φ · Γi+p · φ · Γi+p] + ... (B14)

while

ΓΩ
prop ≡ [Γi+p]+[Γi+p ·φ ·Γi+p]+[Γi+p ·φ ·Γi+p ·φ ·Γi+p]...

(B15)
In the above two equations, all terms in [...] are regular.

Therefore, one can define all the projection operator as,

[Ok1k2;q] = 〈OkFn1,kFn2;0〉Ω , (B16)
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where the average is over the angle between n1 and n2

and the spin indices. The definition connects the vertex
functions to the Fermi liquid parameters,

ΓΩ
3 =

1

z
, (B17)

and,

ΓΩ
prop =

f+
0

z2
, (B18)

We arrive with a parameterization of Γ4,

[Γ4] =
1

z2

vq + f+
0

1− (vq + f+
0 )Π∗0

≡ Rq (B19)

So far, we use the renormalization scheme to resum the
dominating contribution up to the entire Fermi volume.
However, this only resums the singularity in the particle-
hole channel. To resum its exchange counterpart, one
may introduce a symmetrized projection operator,

[Γ4]sym ≡ [Γ4
k1k2;q] + [Γ4

k1k2;−q+k2−k1 ] = Rq −R−q+k2−k1
(B20)

Now the remaining part of Γ4

δΓ4 = Γ4 − [Γ4]sym (B21)

is regular in both the particle-hole and particle-hole-
exchanged channel.

This regular contribution is not guaranteed to be small.
In the original form of the KO paper, the authors pro-
posed to model this contribution with the double counted
contribution,

δΓ4 ≈ − 1

z2
f+

0 (q) +
1

z2
f+

0 (−q + k2 − k1) (B22)

However, a more systematic approach is to resum this
contribution by introducing an effective local interaction,

u ≡ δΓ4
k1=0,k2=0;q=0, (B23)

Then the following parameterization will be a good pa-
rameterization of Γ4 within the entire Fermi volume,

Γ4
k1k2;q ≈ Rq −R−q+k2−k1 + u (B24)

Appendix C: Problem of Double Counting

By definition, the renormalized field theory at the tree
level should exactly reproduces the quasiparticle scatter-
ing amplitude, which is given by the 1PI 4-point vertex
function averaged on the Fermi surface,

z2 [Γ4(k1, k2, q → 0)]kF ,l=0

=
vq + f+

1− (vq + f+)Π∗0
δαβδγδ +

f−

1− f−Π∗0
~σαβ · ~σγδ,

where q = (q, iΩ) should be small compared to the Fermi
momentum and Fermi energy. The spin indices α, γ are
for the two incoming electrons, while β, δ are for the out-
ing ones.

The field theory has three tree level contributions to
the scattering amplitude:

1. Two quasiparticle exchanges an intermediate bo-
son, which generates a contribution,

W (q) =
vq + f+

1− (vq + f+)Π∗0
δαβδγδ +

f−

1− f−Π∗0
~σαβ · ~σγδ,

(C1)
Note that this contribution coincides with the
quasiparticle scattering amplitude in the long-
wave-length limit, meaning all other scattering am-
plitude contributions from the theory must be ex-
actly cancel in this limit.

2. Two quasiparticle exchanges an intermediate bo-
son, then permutates with each other. It generates
a contribution,

[Wex]kF ,l=0 = −w̄+δαδδγβ − w̄−~σαδ · ~σγβ (C2)

where,

w+(θ12) =
vq + f+

1− (vq + f+)Π∗0
|
q=2kF sin2(

θ12
2 )
, (C3)

and,

w−(θ12) =
f−

1− f−Π∗0
|
q=2kF sin2(

θ12
2 )
, (C4)

and we define w̄± as the average of w±(θ12) on the
Fermi surface,

w̄± =

∫
w±(θ12)dΩ. (C5)

Note that the the spin indices β ↔ δ have been
exchanged. To match with the spin indices of the
external legs, one needs to reparameterize it,

δαδδγβ =
1

2
δαβδγδ +

1

2
~σαβ · ~σγδ, (C6)

where we use the identity ~σαβ · ~σγδ = 2δαδδβγ −
δαβδγδ. Similarly,

~σαδ · ~σγβ =
3

2
δαβδγδ −

1

2
~σαβ · ~σγδ (C7)

We conclude the contribution to the scattering am-
plitude,

[Wex]kF ,l=0 = − w̄
+ + 3w̄−

2
δαβδγδ −

w̄+ − w̄−

2
~σαβ · ~σγδ

(C8)
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3. Two quasiparticles has a contact interaction, as-
sume it takes a form,

u(θ12) = u+(θ12)δαβδγδ + u−(θ12)~σαβ · ~σγδ (C9)

If we assume that u±(θ12) is a constant, then the
sum of direct and exchange contribution is

Uαβγδ =
u+ − 3u−

2
δαβδγδ −

u+ − 3u−

2
~σαβ · ~σγδ, (C10)

which only has one free parameter u+ − 3u−. We
may fix this parameter by requiring the contact
term completely cancel the spin-symmetric part of

the exchange contribution in Eq.(C8), namely

u+ − 3u− = w̄+ + 3w̄−. (C11)

This choice will leads to a net spin-asymmetric con-
tribution,

(w̄+ + w̄−)~σαβ · ~σγδ. (C12)

Such correction makes the scattering amplitude
and the Landau parameter unbalanced at the tree
level. If we require it to vanish, we then have an
additional constraint which fixes f−,

w̄− = −w̄+ (C13)

By fixing the spin-symmetric scattering amplitude
to be physical, we are forced to introduce f− and
u together to make the theory self-consistent.
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