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Outline for this tutorial

1. Motivation for a Bayesian approach

2. The basics of the Laplace approximation

3. The Laplace approximation in Bayesian neural networks

4. More recent works on the Laplace approximation

5. Subnetwork inference

6. Adapting the linearized Laplace model evidence

7. Case study: X-ray image reconstruction

2



3

Section 1

Motivation for a Bayesian Approach
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Section 2

The basics of the Laplace approximation



Main idea behind Laplace approximation
Approximate complicated and possibly non-normalized distribution with a Gaussian.

19Figure source: Bishop, 2008.

One-dimensional Example Method named after Pierre-Simon Laplace, who used this 
approach to approximate integrals:

1. Replace integrand with Gaussian.
a.

2. Integrate Gaussian approximation.
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The Laplace approximation

m =
      Figure source: Bishop, 2008.
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The Laplace approximation



1d example
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The multivariate case
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2d example
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Log un-nomralized posterior
in binary classification example Log of Gaussian approximation

Figures source: Murphy 2012.
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Example: Bayesian logistic regression
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Probit approximation to the predictive distribution

We need to evaluate

We approximate σ(x) with the standard Gaussian cdf Φ(x) or probit function.

We scale Φ(x) to have same slope at origin as σ(x): 

                    σ(x) ≈ Φ(λx), where λ  = π / 8.
Note that

Using Φ(λx) ≈ σ(x) on both sides above, we obtain

D. J. MacKay. The evidence framework applied to classification networks. Neural computation, 4(5), 720-736, 1992
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Results in logistic regression example
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Section 3

The Laplace approximation in 
Bayesian neural networks



Bayesian methods for adaptive models
David Mackay. PhD thesis. California Institute of Technology, 1992.
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Posterior distribution in Bayesian neural networks

Regression problem with                                      ,                                       ,                     ,                .

Let                                      be the weights of a neural network with output                 for input     .

The likelihood function is                                                                   where

and 𝛃 is the noise precision. The prior on w is zero-mean Gaussian and 𝜶 is the prior precision:

The log posterior is then
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Let                be the maximum a posteriori (MAP) estimate of the network weights. Then

where

and the approximation to the logarithm of the model evidence is given by 

The Laplace approximation in Bayesian neural networks
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Let                be the maximum a posteriori (MAP) estimate of the network weights. Then

where

and the approximation to the logarithm of the model evidence is given by 
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Approximating the predictive distribution
We can approximate the network function by its linear expansion around                .

The predictive distribution can then be approximated as

where
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Approximating the predictive distribution
We can approximate the network function by its linear expansion around                .

The predictive distribution can then be approximated as

where
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● Mean is equal to prediction 
of MAP solution!



Approximating the predictive distribution
We can approximate the network function by its linear expansion around                .

The predictive distribution can then be approximated as

where
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● Mean is equal to prediction 
of MAP solution!

● Uncertainty high when 
gradient aligns with 
directions of low curvature



Predictive distribution examples
1D toy regression problems. Left, 1 hidden layer, 50 neurls, tanh non-linearities. Right, 
2 hidden layers, 50 neurons per layer and ReLU non-linearities.

Predictive uncertainty is high in regions with a lack of training data.
37



Why use a linearized model for prediction?
We could approximate the predictive distribution by sampling from the Gaussian approximation 
using the original neural network for predictions without linearization.

Neil D. Lawrence. Variational Inference in Probabilistic Models. PhD thesis, Cambridge, 2000.

The linearized model approximation is
critical for good performance in practice!

Samples from Gaussian approximation 

Average network output under generated 
samples, most of which is off scale

Output from network using              .
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Some intuition on what is going on

A lot of mass from the Gaussian approximation falls into regions of low posterior density.

Samples from these regions will result in very poor predictions with the original non-linear model. 

Figure source: Javier Antoran. 39

Why are the predictions with the 
linearized model so good?

The linearized predictions do not change 
so rapidly as in original non-linear model.

More on this later!



Tuning the prior precision 𝜶  
Recall that

We can optimize                    with respect to 𝜶 by noting that

We have assumed that the eigenvalues       do not depend on 𝜶.                    is maximized when

                                    where                                    and we have assumed                              .

40



Tuning the prior precision 𝜶  
Recall that

We can optimize                    with respect to 𝜶 by noting that

We have assumed that the eigenvalues       do not depend on 𝜶.                    is maximized when

                                    where                                    and we have assumed                              .

41

Eigenvalues of 
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Eigenvalues of 

Effective number of

 well-determined parameters



Tuning the noise precision 𝛃  
Recall that

We can optimize                    w.r.t. 𝛃 by noting that the eigenvalues      are proportional to 𝛃, hence

                               and thus

.                   is maximized when
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Example of hyperparameter tuning for regression

F. D. Foresee and T. H. Martin. Gauss-Newton approximation to Bayesian learning. In ICNN, 1997. 44



Generalized Gauss-Newton approximation
The Hessian                                                         may not be positive definite! What can we do?

We can again approximate the network function by its linear expansion:

Using this in the Hessian equation gives the generalized Gauss-Newton (GGN) approximation:

where       is the n_outputs ✕ d Jacobian matrix given by                                                   and

       is the n_outputs ✕ n_outputs matrix  

The GGN is guaranteed to be positive definite when                                  is convex in               .  

J. Martens and I. Sutskever, Learning recurrent neural networks with hessian-free optimization. In ICML, 2011,
F. D. Foresee and T. H. Martin. Gauss-Newton approximation to Bayesian learning. In ICNN, 1997.

The Gauss-Newton approximation to
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Practical implementation
1. Choose initial values for the hyperparameters 𝜶, 𝛃 and network weights w
2. Train the network using a standard optimization algorithm to obtain             
3. Every few cycles of optimization:

a. Update                               given current estimate value of w
b. Compute 𝛄 using eigen-decomposition of A, that is,
c. Update 𝜶 using
d. Update 𝛃 using 

4. Iterate 2 and 3 until convergence

If final 𝛄 is close to d, then network may not be large enough: add more neurons. 

If larger network has same final 𝛄, then the smaller network was enough.

5.
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Classification problems
For C classes, the network has C outputs,        is a one-hot-encoding vector and

where

                                                         and

Similarly as in the probit approximation of the logistic function, we can use

where we use entry-wise vector operations and                                                                      .                                             

We could use sampling, but this is less expensive and works well in practice.

Gibbs, M. N. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, University of Cambridge, September 1997 47



Classification example
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Training Data MAP predictions Laplace predictions

MAP solution is overly confident far from data. Laplace approximation is more conservative. 

David J. C. MacKay. The evidence framework applied to classification networks. Neural computation 4.5 (1992): 720-736.
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Section 4

More recent works on the Laplace 
approximation



Comparison with baselines
Andrew Y. K. Foong, Yingzhen Li, José Miguel Hernández-Lobato, Richard E. Turner. 'In-Between' 
Uncertainty in Bayesian Neural Networks. arXiv:1906.11537, 2019
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Linearized 
Laplace



Results on standard splits of UCI datasets 
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Linearized Laplace performs very well on the standard splits, while sampled Laplace does not. 



Results on gap splits of UCI datasets 
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Linearized Laplace avoids catastrophic results on gap splits for energy and naval problems.



Scaling up with Kronecker products
The GGN can be approximated in a scalable way using Kronecker products ⊗:

Let      ,      and         be the pre-activations, activations and weights for layer    ,                   . Then    

                                                            ,                        and            is the element-wise non-linearity.

Let         be the minus log-likelihood for the n-th data point and let                             . Then

the GGN for layer     is

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 53
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Let      ,      and         be the pre-activations, activations and weights for layer    ,                   . Then    

                                                            ,                        and            is the element-wise non-linearity.

Let         be the minus log-likelihood for the n-th data point and let                             . Then

the GGN for layer     is

Ritter, H., Botev, A., & Barber, D. A scalable laplace approximation for neural networks. In ICLR, 2018.
Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 54
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Pre-activation Gauss 
Newton matrix



Scaling up with Kronecker products
The pre-activation Gauss Newton matrix can be computed recursively using

The diagonal matrices       are defined as                                      .

For the whole dataset, the GGN for layer     can be approximated as

The posterior covariance A is then assumed block diagonal, one block per layer given by

                                    ,    which can be computed efficiently due to the Kronecker factorization.

Immer, A., Korzepa, M., & Bauer, M. Improving predictions of Bayesian neural nets via local linearization. In AISTATS, 2021. 55



Results on toy problem

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 56



Results on toy problem

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 57

Predictions made without 
linearization



Justification for predictions with linearized model
Immer, A., Korzepa, M., & Bauer, M. Improving predictions of Bayesian neural nets via local linearization. In AISTATS, 2021.

The GGN approximation to the Hessian assumes a linearization of the neural network.

GGN is a model approximation, independent of the inference method, e.g. Laplace or VI.

If we use the linearized model for inference, we should also make predictions using it.

The linearized model is                                                                                                                  .                                                                       

The log-posterior is                                                                                              .

The predictive distribution is approximated using sampling:
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Results Fashion-MNIST and CIFAR10

FMNIST: 3 conv. layers and 3 FC layers. CIFAR10: 9 conv. blocks and average pooling.

Results using Kronecker factor approximations.  Prior variance tuned using validation set.

Laplace, linearized improves significantly over MAP solution and non-linearized Laplace.
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Tuning hyper-parameters as well
Immer, A., Bauer, M., Fortuin, V., Rätsch, G., & Emtiyaz, K. M. Scalable marginal likelihood estimation for model 
selection in deep learning. In ICML, 2021.

After some epochs, update layerwise precision hyperparameters by gradient based optimization of

where A approximated using Kronecker products. Done every F epochs after burn-in of B epochs.

For ResNets, they use 
fixup instead of batchnorm.
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Section 5

Subnetwork inference

Daxberger E., Nalisnick E., Allingham J., Antoran J. and Hernández-Lobato J. M. Bayesian Deep 
Learning via Subnetwork Inference. In ICML, 2021.



Collaborators

Erik Daxberger Javier Antoran
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Eric Nalisnick James Allingham



Motivation
Goal: Infer posterior distribution over weights W of deep neural network (DNN)

Problem: Modern DNNs are too big! Even approximate inference is hard!

Existing approaches: Make strong/unrealistic assumptions on posterior,
                                     e.g. full factorization                                      ..                       

                                     This deteriorates the quality of resulting uncertainty estimates!
                                                         (Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)

Question: Do we really need to estimate a posterior over ALL the weights? 63



Proposed Idea
Due to overparameterization, a DNNs accuracy is well-preserved by a small subnetwork.

How to find those subnetworks? E.g. by pruning (Frankle & Carbin 2019).

Can a full DNN’s model uncertainty be well-preserved by a small subnetwork’s model uncertainty?

Answer: Yes!
64



Subnetwork inference
Proposed posterior approximation:

1. How do we obtain the subnetwork posterior approximation           ?
2. How do we set the fixed values              of all remaining weights          ?   
3. How do we select the subnetwork weights       ?
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Laplace Approximation
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1. Obtain point estimate over all weights via (MAP) inference:

2. Infer full-covariance Gaussian posterior over W:

H is the Gauss-Newton approximation of the Hessian of the loss.

● Practically appealing due to simplicity of MAP estimation.

● Not scalable, as H is typically too big in large networks!

● Solution: Select a subnetwork with weights         on which we apply the Laplace                        
                 approximation and keep other weights equal to their MAP point estimates. 
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Subnetwork inference
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Subnetwork inference
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Subnetwork inference
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Subnetwork inference



Questions
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1. How do we obtain the subnetwork posterior approximation           ?

Full-covariance Gaussian approximation via Laplace approximation.

2. How do we set the fixed values              of all the deterministic weights          ?   

Just leave them at their MAP estimates.

3. How do we select the subnetwork weights       ?

Let's see in the next slide!



Subnetwork selection
Goal: Find subnetwork whose posterior is closest to the full network posterior.

Intractable: this depends on all entries of the full network Hessian approximation H.

Assume that posterior factorizes: H is diagonal.

Diagonal assumption for subnetwork selection ≫ diag. assumption for inference

Wasserstein subnetwork selection:
1. Estimate a factorized Gaussian posterior over all weights (with diagonal SWAG).
2. Subnetwork = weights with largest marginal variances in factorized approx. 72



Results on 1D regression
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Expressive inference over a small subnetwork preserves more uncertainty than crude 
inference over the full network!

Model: 2-layer NN with 2600 weights.  Goal: test ‘in-between’ uncertainty (Foong 2019).



Image classification under distribution shift
Model: ResNet-18 with 11M weights. Subnetwork: just 42K (0.38%) weights.
Baselines: MAP, Diagonal Laplace, MC Dropout, Deep Ensembles, SWAG, VOGN.
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Additional results for smaller subnetworks
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Take-home message

Linearized Laplace subnetwork inference, a new Bayesian deep learning method that

1. can be easily applied post-hoc to any pre-trained model.

2. is more accurate than crude approximations over the full network weights.

3. applies to large neural networks without sacrificing much its quality.

4. can outperform some of the best existing methods for uncertainty quantification.
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Section 6

Adapting the linearized Laplace
 model evidence

Antoran J., Janz D., Allingham J. A., Daxberger E., Barbano R., Nalisnick E. and Hernandez-Lobato J. M. Adapting the 
Linearised Laplace Model Evidence for Modern Deep Learning. In ICML, 2022.

Slides prepared by Javier Antoran
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Why is this happening?
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Section 7

Case study: X-ray image reconstruction

Antorán J., Barbano R., Leuschner J., Hernández-Lobato J. M., Jin B. A Probabilistic Deep Image Prior for Computational 
Tomography, arXiv:2203.00479, 2022

Slides prepared by Javier Antoran
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Javier Antoran Riccardo Barbano Bangti JinJohannes Leuschner
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Thanks!
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