
Introduction

Machine learning models like deep neural networks have become so complex, opaque and
underspecified in the data that they are generally considered as black boxes. This lack of
transparency exacerbates a number of other problems typically associated with these models:
they tend to be instable ([?]), encode existing biases ([?]) and learn representations that are
surprising or even counter-intuitive from a human perspective ([?]). Nonetheless, they often
form the basis for data-driven decision-making systems.

As others have pointed out, this scenario gives rise to and undesirable principal-agent
problem involving a group of principals - i.e. human stakeholders - that fail to understand
the behaviour of their agent - i.e. the black-box system ([?]). The group of principals may
include programmers, product managers and other decision-makers who develop and operate
the system as well as those individuals ultimately subject to the decisions made by the system.
In practice, decisions made by black-box systems are typically left unchallenged since the
principals cannot scrutinize them:

“You cannot appeal to (algorithms). They do not listen. Nor do they bend.” [?]

In light of all this, a quickly growing body of literature on explainable artificial intelligence
has emerged. Counterfactual explanations (CE) and algorithmic recourse (AR) fall into this
broader category. Counterfactual explanations can help human stakeholders make sense of the
systems they develop, use or endure: they explain how inputs into a system need to change for
it to produce different decisions. Explainability benefits internal as well as external quality
assurance. Explanations that involve realistic and actionable changes can be used for the
purpose of algorithmic recourse (AR): they offer the group of principals a way to not only
understand their agent’s behaviour, but also adjust or react to it.

The availability of open-source software for the purpose of explaining black-box models through
counterfactuals is still limited. Most existing implmentations are specific to particular method-
ologies. They are also exclusively built in Python and for Python models. The only existing
unifying software approach, for example, is tailored to models built in the two most popular
Python libraries for deep learning. The Julia ecosystem has so far lacked an open-source
implementation of counterfactual explanations.

Through the work presented here we aim to close that gap and thereby contribute to broader
community efforts towards explainable AI. We envision this package to be a go-to place for
counterfactual explanations in Julia. Thanks to its applicability to systems built in other
programming languages we believe that this library may ultimately also benefit the broader
community engaged in data-driven decision making.

Our package provides a simple and intuitive interface to generate counterfactual explanations
for differentiable classification models trained in Julia. It comes with detailed documenta-
tion involving various illustrative example datasets, linear and deep learning classifiers and
counterfactual generators for binary and multi-class prediction tasks. A carefully designed

1

package architecture allows for seamless extension of the package functionality through custom
generators and models. By leveraging Julia’s unique support for language interoperability, we
also demonstrate how to easily use our package to explain models that were built and trained
in Python and R.

The remainder of this article is structured as follows: Section ?? presents related work on
explainable AI, Section ?? provides a brief overview of the methodological framework, Section ??
presents the package functionality. To demonstrate its practical use, Section ?? involves an
application to MNIST data. Finally, we also discuss current limitations of our package, as well
as its future outlook in Section ??. Section ?? concludes.

Background and related work

Literature on explainable AI

The field of explainable artificial intelligence (XAI) is still relatively young and made up of a
variety of subdomains, definitions, concepts and taxonomies. Covering all of these is beyond
the scope of this article, so we will focus only on high-level concepts. The following literature
surveys provide more detail: [?] provide a broad overview of XAI; [?] focus on explainability in
the context of deep learning; and finally, [?] and [?] offer detailed reviews of the literature on
counterfactual explanations and algorithmic recourse.1 Finally, [?] explicitly takes the social
sciences take on explanation into account.

The first broad distinction we want to make here is between interpretable and explainable
AI. These terms are often used interchangeably, but this can cause confusion. We find the
distinction made in [?] useful: interpretable AI involves models that are inherently interpretable
and transparent such as general additive models (GAM), decision trees and rule-based models;
explainable AI may involve models that are not inherently interpretable, but require additional
tools to be explainable to humans. Examples of the latter include ensembles, support vector
machines and deep neural networks. Some would argue that we best avoid the second category
of models [[?]] and instead focus solely on interpretable AI. While we agree that initial efforts
should always be geared towards interpretable models, avoiding black boxes altogether would
entail missed opportunities and anyway is probably not very realistic at this point. For that
reason, we expect the need for explainable AI to persist in the near future. Explainable AI can
further be broadly divided into global and local explainability: the former is concerned with
explaining the average behavior of a model, while the latter involves explanations for individual
predictions [?]. Tools for global explainability include partial dependence plots (PDP), which
involves the computation of marginal effects through Monte Carlo, and global surrogates.
A surrogate model is an interpretable model that is trained to explain the predictions of a
black-box model.

1Readers who prefer a text-book approach may also want to consider [?] and [?]

2

Counterfactual explanations fall into the category of local methods: they explain how indi-
vidual predictions change in response to individual feature perturbations. Among the most
popular alternatives to counterfactual explanations are local surrogate explainers including
local interpretable model-agnostic explanations (LIME) and Shapley additive explanations
(SHAP). Since explanations produced by LIME and SHAP typically involve simple feature
importance plots, they arguably rely at the very least on reasonably interpretable features.
Contrary to counterfactual explanations, for example, it is not obvious how to apply LIME
and SHAP to visual or audio data. Nonetheless, local surrogate explainers are among the most
widely used XAI tools today, potentially because they are easily understood, relatively fast
and implemented in popular programming languages. Proponents of surrogate explainers also
commonly mention that there is a straight-forward way to assess their reliability: a surrogate
model that generates predictions in line with those produced by the black-box model is said
to have high fidelity and therefore considered reliable. As intuitive as this notion may be,
it also points to an obvious shortfall of surrogate explainers: even a high-fidelity surrogate
model that produces the same predictions as the black-box model 99 percent of the time
is useless and potentially misleading for every 1 out 100 individual predictions. In fact, a
recent study has shown that even experienced data scientists tend to put too much trust in
explanations produced by LIME and SHAP ([?]). Another recent work has shown that both
LIME and SHAP can be easily fooled: both methods depend on random input perturbations,
a property that can be abused by adverse agents to essentially whitewash strongly biased
black-box models ([?]). In a related work the same authors find that while gradient-based
counterfactual explanations can also be manipulated, there is a straight-forward way to protect
against this in practice ([?]). In the context of quality assessment, it is also worth noting
that - contrary to surrogate explainers - counterfactual explanations always achieve full fidelity
by construction: counterfactuals are searched with respect to the black-box classifier, not
some proxy for it. That being said, counterfactual explanations should also be used with care
and research around them is still at its early stages. We shall discuss this in more detail in
Section ??.

Existing software

To the best of our knowledge, the package introduced here provides the first implementation
of counterfactual explanations in Julia and therefore represents a novel contribution to the
community. As for other programming languages, we are only aware of one other unifying
framework: the recently introduce Python library CARLA ([?]). In addition to that, there
exists open-source code for some specific approaches to counterfactual explanations that have
been proposed in recent years. The approach-specific implementations that we have been able
to find are generally well documented, but exclusively in Python. For example, a PyTorch
implementation of a greedy generator for Bayesian models proposed in [?] has been released.2

2See here: https://github.com/oscarkey/explanations-by-minimizing-uncertainty

3

https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/?badge=latest
https://github.com/oscarkey/explanations-by-minimizing-uncertainty

As another example, the popular InterpretML library includes an implementation of a diverse
counterfactual generator proposed by [?].

Generally speaking, software development in the space of XAI has largely focused on various
global methods and surrogate explainers: implementations of PDP, LIME and SHAP are
available for both Python (e.g. lime, shap) and R (e.g. lime, iml, shapper, fastshap). In
the Julia space we have only been able to identify one package that falls into the broader scope
of XAI, namely ShapML.jl which provides a fast implementation of SHAP.3 We also should
not fail to mention the comprehensive Interpretable AI infrastructure, which focuses exclusively
on interpretable models. Arguably the current availability of tools for explaining black-box
models in Julia is limited, but it appears that the community is invested in changing that.
The team behind MLJ.jl, for example, is currently recruiting contributors for a project about
both interpretable and explainable AI.4 With our work on counterfactual explanations we hope
to contribute to these efforts. We think that because of its unique transparency the Julia
language naturally lends itself towards building a greater degree of trust in machine learning
and artificial intelligence.

Counterfactual explanations

Counterfactual search happens in the feature space: we are interested in understanding how
we need to change individual attributes in order to change the model output to a desired value
or label ([?]). Typically the underlying methodology is presented in the context of binary
classification: M : X 7→ Y where X ⊂ RD and Y = {0, 1}. Further, let t = 1 be the target
class and let x denote the factual feature vector of some individual sample outside of the target
class, so y = M(x) = 0. We follow this convention here, though it should be noted that the
ideas presented here also carry over to multi-class problems and regression ([?]).

A framework for Counterfactual Explanations

The counterfactual search objective originally proposed by [?] is as follows

min
x′∈X

h(x′) s. t. M(x′) = t (1)

where h(·) quantifies how complex or costly it is to go from the factual x to the counterfactual
x′. To simplify things we can restate this constrained objective (Equation ??) as the following
unconstrained and differentiable problem:

3See here: https://github.com/nredell/ShapML.jl
4For details, see the Google Summer of Code 2022 project proposal: https://julialang.org/jsoc/gsoc/MLJ/#int

erpretable_machine_learning_in_julia.

4

https://github.com/interpretml
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://cran.r-project.org/web/packages/lime/index.html
https://cran.r-project.org/web/packages/lime/index.html
https://modeloriented.github.io/shapper/
https://github.com/bgreenwell/fastshap
https://docs.interpretable.ai/stable/IAIBase/data/
https://github.com/nredell/ShapML.jl
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia

x′ = arg min
x′

ℓ(M(x′), t) + λh(x′) (2)

Here ℓ denotes some loss function targeting the deviation between the target label and the
predicted label and λ governs the strength of the complexity penalty. Provided we have gradient
access for the black-box model M the solution to this problem (Equation ??) can be found
through gradient descent. This generic framework lays the foundation for most state-of-the-art
approaches to counterfactual search and is also used as the baseline approach in our package.
The hyperparameter λ is typically tuned through grid search. Conventional choices for ℓ include
margin-based losses like cross-entropy loss and hinge loss. It is worth pointing out that the
loss function is typically computed with respect to logits rather than predicted probabilities, a
convention that we have chosen to follow.5

Numerous - and in some cases competing - extensions to this simple approach have been
developed since counterfactual explanations were first proposed in 2017 (see [?] and [?] for
surveys). The various approaches largely differ in how they define the complexity penalty.
In [?], for example, h(·) is defined in terms of the Manhattan distance between factual and
counterfactual feature values. While this is an intuitive choice, it is too simple to address many
of the desirable properties of effective counterfactual explanations that have been set out. These
desiderata include: closeness - the average distance between factual and counterfactual features
should be small ([?]); actionability - the proposed feature perturbation should actually be
actionable ([?], [?]); plausibility - the counterfactual explanation should be realistic plausible
to a human ([?], [?]); unambiguity - a human should have no trouble assigning a label
to the counterfactual ([?]); sparsity - the counterfactual explanation should involve as few
individual feature changes as possible ([?]); robustness - the counterfactual explanation should
be robust to domain and model shifts ([?]); diversity - ideally multiple diverse counterfactual
explanations should be provided ([?]); and causality - counterfactual explanations should
respect the structural causal model underlying the data generating process ([?],[?]).

The CounterfactualExplanations.jl Package

Figure ?? provides an overview of the package architecture. It is built around two core modules
that are designed to be as extensible as possible through dispatch: 1) Models is concerned
with making any arbitrary model compatible with the package; 2) Generators is used to
implement arbitrary counterfactual search algorithms.6 The core function of the package
generate_counterfactual uses an instance of type T <: AbstractFittedModel produced
by the Models module and an instance of type T <: AbstractGenerator produced by the

5While the rationale for this convention is not entirely obvious, implementations of loss functions with respect to
logits are often numerically more stable. For example, the logitbinarycrossentropy(ŷ, y) implementation
in Flux.Losses (used here) is more stable than the mathematically equivalent binarycrossentropy(ŷ, y).

6We have made an effort to keep the code base a flexible and extensible as possible, but cannot guarantee at
this point that really any counterfactual generator can be implemented without further adaptation.

5

Generators module. Relating this back to the methodology outlined in Section ??, the former
instance corresponds to the model M , while the latter defines the rules for the counterfactual
search (Equation ??). At the time of writing the following counterfactual generators have been
implemented in the package:

• Generic [?]

• Greedy [?]

• DiCE [?]

• Latent Space Search as in REVISE [?] and CLUE [?]

The package currently offers native support for models built in the following libraries: Flux;
Torch for R; PyTorch. In the following section we will present usage examples and explain how
the package can be extended through custom generators and models.

Figure 1: Overview of package architecture. Modules are shown in red, structs in green and
functions in blue.

CounterfactualExplanations.jl: Basic Usage

A Simple Generic Generator

The code below provides a complete example demonstrating how the framework presented in
Section ?? can be implemented in Julia with our package. Using a synthetic data set with
linearly separable samples we firstly define our model and then generate a counterfactual
for a randomly selected sample. Figure ?? shows the resulting counterfactual path in the
two-dimensional feature space. Features go through iterative perturbations until the desired
confidence level is reached as illustrated by the contour in the background, which indicates the
classifier’s predicted probability that the label is equal to 1.

6

https://fluxml.ai/
https://torch.mlverse.org/
https://pytorch.org/

It may help to go through the relevant parts of the code in some more detail starting from
the part involving the model. For illustrative purposes the Models module ships with a
constructor for a logistic regression model: LogisticModel(W::Matrix,b::AbstractArray)
<: AbstractFittedModel. This constructor does not fit the regression model, but rather
takes its underlying parameters as given. In other words, it is generally assumed that the user
has already estimated a model. Based on the provided estimates two functions are already
implemented that compute logits and probabilities for the model, respectively. Below we will
see how users can use dispatch to extend these functions for use with arbitrary models. For
now it is enough to note that those methods define how the model makes its predictions M(x)
and hence they form an integral part of the counterfactual search. With the model M defined
in the code below we go on to set up the counterfactual search as follows: 1) choose a random
sample x; 2) compute its factual label y as predicted by the model (M(x) = 0); and 3) specify
the other class as our target label (t = 1) along with a desired level of confidence in the
final prediction M(x′) = t.

The last two lines of the code below define the counterfactual generator and finally run
the counterfactual search. The first three fields of the GenericGenerator are reserved for
hyperparameters governing the strength of the complexity penalty, the step size for gradient
descent and the tolerance for convergence. The fourth field accepts a Symbol defining the type
of loss function ℓ to be used. Since we are dealing with a binary classification problem, logit
binary cross-entropy is an appropriate choice.7 The fifth and last field can be used to define
mutability constraints for the features.

[language=Julia, escapechar=@, numbers=left] Data: using CounterfactualExplanations,
Random Random.seed!(1234) N = 100 number of data points xs, ys = toydatalinear(N)X =
hcat(xs...)counterfactualdata = CounterfactualData(X, ys′)

Model: using CounterfactualExplanations.Models w = [1.0 1.0] true coefficients b = 0 M =
LogisticModel(w, [b])

Setup: x = selectf actual(counterfactualdata, rand(1 : length(xs)))y = round(probs(M, x)[1])target =
ifelse(y == 1.0, 0.0, 1.0)

Counterfactual search: generator = GenericGenerator() counterfactual = generatecounterfactual(x, target, counterfactualdata, M, generator)

In this simple example the generic generator produces an effective counterfactual: the decision
boundary is crossed (i.e. the counterfactual explanation is valid) and upon visual inspection the
counterfactual seems plausible (Figure ??). Still, the example also illustrates that things may
well go wrong. Since the underlying model produces high-confidence predictions in regions free
of any data - that is regions with high epistemic uncertainty - it is easy to think of scenarios
that involve valid but unrealistic counterfactuals. Similarly, any degree of overfitting can
be expected to result in more ambiguous counterfactual explanations, since it reduces the
classifiers sensitivity to regions with high aleatoric uncertainty. Consider, for example, the

7As mentioned earlier, the loss function is computed with respect to logits and hence it is important to use
logit binary cross-entropy loss as opposed to just binary cross-entropy.

7

Figure 2: Counterfactual path using generic counterfactual generator for conventional binary
classifier.

scenario illustrated in Figure ??, which involves the same logistic classifier, but a massively
overfitted version of it. In this case generic search may yield an unrealistic counterfactual
that is well into the yellow region and yet far away from all other samples (red marker) or an
ambiguous counterfactual near the decision boundary (black marker).

More Advanced Generators

The more advanced generators currently implemented in CounterfactualExplanations.jl
are designed to generate more realistic counterfactuals. In this context, ‘realistic’ is defined in
the sense that counterfactuals ought to be generated by the same data generating process (DGP)
that generates the actual data points. To this end, Latent Space generators like REVISE [?]
use a separate generative model to learn the DGP. We refer to them as Latent Space generators,
because they search counterfactuals in the latent embedding learned by the generative model.8.
The Greedy approach [?] instead relies minimizing predictive uncertainty in order to generate
realistic counterfactuals. CLUE [?] can be thought of as a combination of these two ideas.
The other generator currently implemented, DiCE [?], generates multiple counterfactuals at
once that are as diverse as possible. This strategy is based on the intuition that a wide variety
of diverse explanations may be suitable depending on the practical context.

Code ?? below shows a more advanced usage example involving the DiCE generator. Once again
it is worth dwelling on this for a moment. In line ?? we instantiate a Flux optimizer that will
determine how exactly the counterfactual search objective is optimized. That optimizer is then

8Currently our implementation relies on a Variational Autoencoder (VAE)

8

Figure 3: Unrealistic and ambiguous counterfactuals that may be produced by generic counter-
factual search for an overfitted conventional binary classifier.

fed to the DiCEGenerator in line ??.9. The main API call to actually generate counterfactuals
is the same as before, but note that in line ?? we have specified an optional key argument
that determines how many counterfactuals are generated. For the DiCE generator it naturally
makes sense to generate multiple counterfactuals, but note that this is in principal also possible
for all other generators.10 Figure ?? shows the resulting output. It was generated by calling
the generic plot method directly on the object returned by generate_counterfactual.

[language=Julia, escapechar=@, numbers=left, label=lst:binary-advanced, caption=] Counter-
factual search: opt = Flux.Optimise.Descent(1.0) @@ generator = DiCEGenerator(;opt = opt)
@@ counterfactuals = generatecounterfactual(x, target, counterfactualdata, M, generator; numcounterfactuals =
5@@)Plottingplt = plot(counterfactuals)

Adding Custom Models

One of our priorities has been to make CounterfactualExplanations extensible and versatile.
In the long term we aim to add support for more default models and counterfactual generators.
In the short term it is designed to allow users to integrate models and generators themselves.
Ideally, these community efforts will facilitate our long-term goals. At the high level, only two

9Note that all differentiable generators except the GreedyGenerator work with Flux optimizers and accept
them as an optional key argument.

10By default counterfactuals are initialized by adding a small, random perturbation, as this improves adversarial
robustness [?]. Therefore, generating multiple counterfactuals will yield multiple distinct outcomes even
without an explicit diversity constraint.

9

Figure 4: Counterfactual path using the DiCE generator.

steps are necessary to make any supervised learning model compatible with our package11:

Subtyping: the model needs to be declared as a subtype of AbstractFittedModel.

Dispatch: the functions logits and probs need to be extended through custom methods for
the model in question.

To demonstrate how this can be done in practice, we will reiterate here how native support for
Flux.jl ([?]) deep learning models was enabled.12 Once again we use synthetic data for an
illustrative example. Code ?? below builds a simple model architecture that can be used for a
multi-class prediction task. Note how outputs from the final layer are not passed through a
softmax activation function, since counterfactual loss is evaluated with respect to logits as we
discussed earlier. The model is trained with dropout for ten training epochs.

[language=Julia, escapechar=@, numbers=left, label=lst:nn, caption=] nhidden =
32outputdim = length(unique(y))inputdim = 2model = Chain(Dense(inputdim, nhidden, activation), Dropout(0.1), Dense(nhidden, outputdim))

Code ?? below implements the two steps that were necessary to make Flux mod-
els compatible with the package. In line ?? we declare our new struct as a subtype of
AbstractDifferentiableModel, which itself is an abstract subtype of AbstractFittedModel.13

Computing logits amounts to just calling the model on inputs. Predicted probabilities for
labels can than be computed by passing predicted logits through the softmax function.

11In order for the model to be compatible with the gradient-based default generators presented in Section ??
gradient access is also necessary, but any model can also be complemented with a custom generator.

12Flux models are now natively supported by our package and can be instantiated by calling FluxModel()
13Note that in line ?? we also provide a field determining the likelihood. This is optional and only used internally

to determine which loss function to use in the counterfactual search. If this field is not provided to the model,
the loss function needs to be explicitly supplied to the generator.

10

https://fluxml.ai/

[language=Julia, escapechar=@, numbers=left, label=lst:mymodel, caption=] Step 1) struct
MyFluxModel <: AbstractDifferentiableModel @@ model::Any likelihood::Symbol @@ end

Step 2) import functions in order to extend import CounterfactualExplanations.Models: logits
import CounterfactualExplanations.Models: probs logits(M::MyFluxModel, X::AbstractArray)
= M.model(X) probs(M::MyFluxModel, X::AbstractArray) = softmax(logits(M, X)) M =
MyFluxModel(model)

The API call for actually generating counterfactuals for our new model is the same as before.
Figure ?? shows the resulting counterfactual path for a randomly chosen sample. In this case the
contour shows the predicted probability that the input is in the target class (t = ‘juliatarget‘).
Generic search yields a valid, realistic and unambiguous counterfactual.

Figure 5: Counterfactual path using generic counterfactual generator for multi-class classifier.

Adding Custom Generators

To illustrate how custom generators can be implemented we will consider a simple example of a
generator that extends the functionality of our GenericGenerator. We have noted elsewhere
that the effectiveness of counterfactual explanations depends to some degree on the quality of
the fitted model. Another, perhaps trivial, thing to note is that counterfactual explanations
are not unique: there are potentially many valid counterfactual paths. One idea building on
these two observations might be to introduce some form of regularization in the counterfactual
search. For example, we could use dropout to randomly switch features on and off in each
iteration. Without dwelling further on the merit of this idea, we will now briefly show how this
can be implemented.

11

A Generator with Dropout

Code ?? below implements two important steps: 1) create an abstract subtype of
the AbstractGradientBasedGenerator and 2) create a constructor similar to the
GenericConstructor, but with one additional field for the probability of dropout.

[language=Julia, escapechar=@, numbers=left, label=lst:dropout, caption=] Abstract suptype:
abstract type AbstractDropoutGenerator <: AbstractGradientBasedGenerator end

Constructor: struct DropoutGenerator <: AbstractDropoutGenerator loss::Symbol
loss function complexity::Function complexity function @λ@::AbstractFloat strength
of penalty decisionthreshold :: UnionNothing, AbstractF loatprobabilitythresholdopt ::
Anyoptimizer@τ@::AbstractFloat tolerance for convergence pdropout :: AbstractF loatdropoutrateend

Instantiate: using LinearAlgebra generator = DropoutGenerator(:logitbinarycrossentropy,
norm, 0.1, 0.5, Flux.Optimise.Descent(), 0.1, 0.5)

Next, in code ?? we define how feature perturbations are generated for our custom dropout
generator: in particular, we extend the relevant function through a method that implements
the dropout logic.

[language=Julia, escapechar=@, numbers=left, label=lst:generate, caption=] using Counterfac-
tualExplanations.Generators import Generators: generateperturbations, proposestateusingStatsBasefunctiongenerateperturbations(generator ::
AbstractDropoutGenerator, counterfactualstate :: State)@s′@ = deepcopy(counterfactualstate.@s′@)
new@s′@ = proposestate(generator, counterfactualstate)@∆s′@ = new@s′@ - @s′@ gradient
step

Dropout: settozero = sample(1 : length(@∆s′@), Int(round(generator.pdropout ∗
length(@∆s′@))), replace=false) @∆s′@[settozero]. = 0return@∆s′@ end

Finally, we proceed to generate counterfactuals in the same way we always do. The resulting
counterfactual path is shown in Figure ??.

Feature constraints

In practice, features usually cannot be perturbed arbitrarily. Suppose, for example, that one
of the features used by a bank to predict the credit worthiness of its clients is gender. If a
counterfactual explanation for the prediction model indicates that female clients should change
their gender to improve their credit worthiness, then this is an interesting insight (it reveals
gender bias), but it is not usually an actionable transformation in practice. In such cases we
may want to constrain the mutability of features to ensure actionable and realistic recourse.
To illustrate how this can be implemented in CounterfactualExplanations.jl we will look
at the linearly separable toy dataset again.

12

Figure 6: Counterfactual path for a generator with dropout.

Mutability

Mutability of features can be defined in terms of four different options: 1) the feature is
mutable in both directions, 2) the feature can only increase (e.g. age), 3) the feature can only
decrease (e.g. time left until your next deadline) and 4) the feature is not mutable (e.g. skin
colour, ethnicity, . . .). To specify which category a feature belongs to, you can pass a vector of
symbols containing the mutability constraints at the pre-processing stage. For each feature
you can choose from these four options: :both (mutable in both directions), :increase (only
up), :decrease (only down) and :none (immutable). By default, nothing is passed to that
keyword argument and it is assumed that all features are mutable in both directions.

Below we impose that the second feature is immutable. The resulting counterfactual path is
shown in Figure ?? below. Since only the first feature can be perturbed, the sample can only
move along the horizontal axis.

[language=Julia, escapechar=@, numbers=left] counterfactualdata = CounterfactualData(X, ys′; mutability =
[: both, : none])

Language interoperability

The Julia language offers unique support for programming language interoperability. For
example, calling R or Python is made remarkably easy through RCall.jl and PyCall.jl,
respectively. This functionality can be leveraged to use CounterfactualExplanations.jl
to generate explanations for models that were developed in other programming languages.
While at the time of writing we have not yet implemented out-of-the-box support for foreign

13

Figure 7: Counterfactual path with immutable feature.

programming languages, the following example involving a torch neural network trained in R
demonstrates how versatile our package is.14

Explaining a model trained in R

We have trained a simple MLP for binary classification task involving a synthetic data set
using the R library torch. Inside the R working environment the fitted torch model is stored
as an object called model. That R object can be accessed from Julia using RCall.jl by simply
calling R"model". As in Section ?? and Section ?? the first thing necessary to make this model
compatible with our package is to declare it as a subtype of Model.AbstractFittedModel. As
always we also need to extend the logits and probs functions to make the model compatible
with CounterfactualExplanations.jl. The code below shows how this can be done. Logits
are returned by the torch model and copied from R into the Julia environment. Probabilities
are then computed in Julia by passing the logits through the sigmoid function.

[language=Julia] Step 1) struct TorchNetwork <: Models.AbstractFittedModel nn::Any end

Step 2) function logits(M::TorchNetwork, X::AbstractArray) nn = M.nn y = rcopy(R"asarray(nn(torchtensor(t(X))))")
y = isa(y, AbstractArray) ? y : [y] return y’ end function probs(M::TorchNetwork,
X::AbstractArray) return .(logits(M, X)) end M = TorchNetwork(R"model")

Next, we need to do a tiny bit of work on the AbstractGenerator side. The default methods
underlying the counterfactual generators are desiged to work with models that have gradi-
ent access through Zygote.jl, one of Julia’s main autodifferentiation packages. Of course,
Zygote.jl cannot access the gradients of our torch model, so we need to adapt the code
14The corresponding example involving PyTorch is analagous and therefore not included here. You may find it

here: https://www.paltmeyer.com/CounterfactualExplanations.jl/dev/tutorials/interop/

14

https://www.paltmeyer.com/CounterfactualExplanations.jl/dev/tutorials/interop/

slightly. Fortunately, it turns out that all we need to do is extend the function that computes
the gradient with respect to the loss function for the generic counterfactual search. In particular,
we will extend the function by a method that is specific to the TorchNetwork type we defined
above. The code below implements this: our new method calls R in order to use torch’s
autodifferentiation functionality for computing the gradient. The method itself is then used by
the core function generate_counterfactuals introduced earlier. From here on onwards the
CounterfactualExplanations.jl functionality can be used as always. Figure ?? shows the
counterfactual path for a randomly chosen sample with respect to the MLP trained in R.

[language=Julia, escapechar=@, numbers=left] import CounterfactualExplanations.Generators:
@∂ℓ@ using LinearAlgebra

Countefactual loss: function @∂ℓ@(generator::AbstractGradientBasedGenerator,
counterfactualstate :: CounterfactualState)M = counterfactualstate.Mnn = M.nn@x′@ =
counterfactualstate.@x′@ t = counterfactualstate.targetencodedR”””x < −torchtensor(@x′@,
requiresgrad = TRUE)output < −nn(x) lossf un < −nnfbinarycrossentropywithlogitsobjloss <
−lossf un(output,t) objlossbackward() """ grad = rcopy(R"asarray(xgrad)") return grad
end

Figure 8: Counterfactual path using the generic counterfactual generator for a model trained
in R.

Application to MNIST

Now that we have explained the basic functionality of CounterfactualExplanations through
a few illustrative toy examples, it is time to consider some real data. The MNIST dataset
contains 60,000 training samples of handwritten digits in the form of 28x28 pixel grey-scale
images ([?]). Each image is associated with a label indicating the digit (0-9) that the image

15

represents. The data makes for an interesting case-study of counterfactual explanations, because
humans have a good idea of what realistic counterfactuals of digits look like. For example, if
you were asked to pick up an eraser and turn the digit in Figure ?? into a four (4) you would
know exactly what to do: just erase the top part. In [?] leverage this idea to illustrate to the
reader that their methodolgy produces effective counterfactuals. In what follows we replicate
some of their findings. You as the reader are therefore the perfect judge to evaluate the quality
of the counterfactual explanations presented here.

On the model side we will use two pre-trained classifiers15: firstly, a simple multi-layer
perceptron (MLP) and, secondly, a deep ensemble composed of five such MLPs following
[?]. Deep ensembles are approximate Bayesian model averages that have been shown to yield
high-quality esimtates of predictve uncertainty for neural networks ([?], [?])). In the previous
section we already created the necessary subtype and methods to make the multi-output MLP
compatible with our package. The code below implements the two necessary steps for the deep
ensemble.

[language=Julia, escapechar=@, numbers=left] using Flux: stack Step 1) struct FittedEnsem-
ble <: Models.AbstractFittedModel ensemble::AbstractArray end Step 2) using Statistics
logits(M::FittedEnsemble, X::AbstractArray) = mean(stack([m(X) for m in M.ensemble],3),
dims=3) probs(M::FittedEnsemble, X::AbstractArray) = mean(stack([softmax(m(X)) for m in
M.ensemble],3), dims=3) Mensemble = FittedEnsemble(ensemble)

Figure 9: A handwritten nine (9) randomly drawn from the MNIST dataset.

For the counterfactual search we will use four different combinations of classifiers and generators:
firstly, the generic approach for the MLP; secondly, the greedy approach for the MLP; thirdly,
the generic approach for the deep ensemble; and finally, the greedy approach for the deep
ensemble.

We begin by turning the nine in Figure ?? into a four. Figure ?? shows the resulting
counterfactuals. In every case the desired label switch is in fact achieved, but arguably from a
human perspective only the counterfactuals for the deep ensemble look like a four. The generic
generator produces mild perturbations in regions that seem irrelevant from a human perspective,
but nonetheless yields a coutnerfactual that can pass as a four. The greedy approach ([?])
clearly targets pixels at the top of the handwritten nine and yields the best result overall. For

15The pre-trained models were stored as package artifacts and loaded through helper functions.

16

the non-bayesian MLP, both the generic and the greedy approach generate counterfactuals that
look much like adversarial examples: they perturb pixels in seemingly random regions on the
image. Figure ?? shows another example. This time the goal is to turn a randomly chosen
three (3) into an eight (8). Onve again the outcomes for the deep ensemble look more realistic,
but overall the generated counterfactuals look less effective than those in Figure ??. The results
could likely be improved by using adversarial training for the classifiers as recommended in
[?].

Figure 10: Counterfactual explanations for MNIST: turning a nine (9) into a four (4).

Overall, the examples in this section demonstrate two points that we have already made earlier:
firstly, the findings in [?] can indeed complement other existing approaches to counterfactual
generation; and secondly, the quality of the classifier is clearly reflected in the quality of
the counterfactual explanations. In other words, we cannot generate effective counterfactual
explanations for a poorly trained model. That is actually desirable: if a model bases its
predictions on representations that are not intuitive to a human, we would like that to be
evident from the counterfactual explanation. From that perspective, counterfactual explanations
can help us to not only understand a black-box model, but potentially also guide us in improving
it.

Figure 11: Counterfactual explanations for MNIST: turning a three (3) into an eight (8).

Discussiong and Outlook

We believe that this package in its current form offers a valuable contribution to ongoing efforts
towards explainable artificial intelligence by the broader Julia community. That being said,
there is significant scope for exciting future developments, which we briefly outline in this final
section.

17

Candidate models and generators

At the time of writing the package supports a handful of default models and generators either
natively or through minimal augmentation. In future work we would like to prioritize the
addition of further predictive models and especially generators. With respect to the former, it
would be useful to add native support for any arbitrary Flux model, as well as predictive models
built in other popular libraries including MLJ.jl, ScikitLearn.jl, GLM.jl and Turing.jl.
This may also involve adding support for regression models as well as non-differentiable models.
In terms of counterfactual generators, we are particularly interested in having the following
approaches added: CLUE [?], DiCE [?], MINT [?], REVISE [?] and ROAR [?]. Through its
composable nature, our package may also allow for combining different approaches.

Candidate datasets

For benchmarking and testing purposes it will be crucial to add more datasets to our library. We
would like to prioritize datasets that have typically been used in the literature on counterfaction
explanations including: Adult [?], Boston Housing [?], COMPAS [?] and German Credit [?].
That being said, there is also scope for adding data sources that have so far not been explored
much in this context including image, audio, natural language and timeseries data.

Improved data preprocessing

Support for data preprocessing is currently limited to adding mutabilitiy and domain constraints.
For practical use, the package should ideally be able to natively handle categorical data. It
should also offer support for scale independence. The basic module for this is already in place
and should be realtively easily extended.

Concluding remarks

The goal of this paper is to illustrate the need for explainability in machine learning and
the promise of counterfactual explanations in this context. To this end, we introduced
CounterfactualExplanation.jl: a package for generating counterfactual explanations and
algorithmic recourse in Julia. We envision this package to be a go-to place for explaining
arbitrary predictive models through a diverse suite of counterfactual generators. It can also
serve as a testing ground for new and existing methodological approaches to counterfactual
explanations and algorithmic recourse. We invite the Julia community to contribute to these
goals through usage, open challenge and active development.

18

	Introduction
	Background and related work
	Literature on explainable AI
	Existing software

	Counterfactual explanations
	A framework for Counterfactual Explanations

	The CounterfactualExplanations.jl Package
	CounterfactualExplanations.jl: Basic Usage
	A Simple Generic Generator
	More Advanced Generators

	Adding Custom Models
	Adding Custom Generators
	A Generator with Dropout

	Feature constraints
	Mutability

	Language interoperability
	Explaining a model trained in R

	Application to MNIST
	Discussiong and Outlook
	Candidate models and generators
	Candidate datasets
	Improved data preprocessing

	Concluding remarks

