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ABSTRACT

Treating deep neural networks probabilistically comes with numer-
ous advantages including improved robustness and greater inter-
pretability. These factors are key to building artificial intelligence
(AJ) that is trustworthy. A drawback commonly associated with ex-
isting Bayesian methods is that they increase computational costs.
Recent work has shown that Bayesian deep learning can be ef-
fortless through Laplace approximation. We propose a small Julia
package, ‘LaplaceRedux.jl‘ that implements this new approach for
deep neural networks trained in ‘Flux.jl‘.
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1. Background

Over the past decade Deep Learning (DL) has arguably been one
of the dominating subdisciplines of Artificial Intelligence. Despite
the tremendous success of deep neural networks, practitioners and
researchers have also pointed to a vast number of pitfalls that have
so far inhibited the use of DL in safety-critical applications. Among
other things these pitfalls include a lack adversarial robustness [4]
and an inherent opaqueness of deep neural networks, often de-
scribed as the black-box problem.

In deep learning, the number of parameters relative to the size of
the available data is generally huge:

[...] deep neural networks are typically very under-
specified by the available data, and [...] parameters
[therefore] correspond to a diverse variety of com-
pelling explanations for the data. [9]

A scenario like this very much calls for treating model predictions
probabilistically [9]. It is therefore not surprising that interest in
Bayesian deep learning has grown in recent years as researchers
have tackled the problem from a wide range of angles includ-
ing: MCMC (see Turing), Mean Field Variational Inference [1],
Monte Carlo Dropout [3] and Deep Ensembles [6]. Laplace Re-
dux ([S],[2]]) is one of the most recent and promising approaches to
Bayesian neural networks (BNN).

2. Laplace Approximation for Deep Learning

LetD = {x,y}_, denote our feature-label pairs and let f(x; 0) =
y denote some deep neural network specified by its parameters 6.
We are interested in estimating the posterior predictive distribution
given by the following Bayesian model average (BMA):

p(ylz, D) = / p(yle, 0)p(6D)d6 (1)

To do so we first need to compute the weight posterior p(8|D).
Laplace Approximation (LA) relies on the fact that the second-
order Taylor expansion of this posteriour amounts to a multivariate

Gaussian ¢(0) = N (ji, X) centered around the maximum a poste-
riori (MAP) estimate /i = 6 = arg maxy p(A|D) with covariance
equal to the inverse Hessian of our loss function evaluated at the
mode 3 = —(H|;) .

To apply Laplace in the context of deep learning, we can train our
network in the standard way by minimizing the negative log likeli-
hood £(0) = — log p(y|x, D). To obtain Gaussian LA weight pos-
terior we then only need to compute the Hessian evaluated at the
obtained MAP estimate.

Laplace Approximation itself dates back to the 18th century, but
despite its simplicity it has not been widely used or studied by the
deep learning community until recently. One reason for this may
be that for large neural networks with many parameters the exact
Hessian computation is prohibitive. One can rely on linearized ap-
proximations of the Hessian, but those still scale quadratically in
the number of parameters. Fortunately, recent work has shown that
block-diagonal factorizations can be successfully applied in this
context [8]].

Another reason for why LA may have been neglected in the past,
is that early attempts at using it for deep learning actually failed:
simply sampling from the Laplace posterior to compute the exact
BNN posterior predictive distribution in Equation[I]does not work
when using approximations for the Hessian [7]. Instead we can use
a linear expansion of the predictive around the mode as demon-
strated by Immer et al. (2020) [5)]. Formally, we locally linearize
our network,

F(@:0) = f(2:0) + To(0 — 0) 2
which turns the BNN into a Bayesian generalized linear model

(GLM) where 0 corresponds to the MAP estimate as before. The
corresponding GLM predictive,

p(yle, D) = E [p(yl iy (@:0.)], 0n~al0) )

has a closed-form solution for regression problems and for clas-
sification problems can be approximated using (extended) probit
approximation [2].

Immer et al. (2020) [S] provide a much more detailed exposition of
the above with a focus on theoretical underpinnings and intuition.
Daxberger et el. (2021) [2] introduce Laplace Redux from more of
an applied perspective and present a comprehensive Pyhon imple-
mentation: laplace.


https://turing.ml/dev/tutorials/03-bayesian-neural-network/
https://aleximmer.github.io/Laplace/
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Fig. 1. Posterior predictive distribution of a simple neural network in the
2D feature space using the plugin estimator (left) and Laplace approxima-
tion (right).

3. LaplaceRedux. jl — a Julia implementation

The LaplaceRedux.jl package is intended to make this new
methodological framework available to the Julia community. It is
interfaced to the popular deep learning library, Flux. j1.

Using just a few lines of code the package enables users to compute
apply Laplace Redux to their pre-trained neural networks. A basic
usage example is shown in listing 3} the Laplace function simply
wraps the Flux neural network nn. Here we have also provided two
of the optional key arguments that determine the prior precision A
and the subset of network layers to be used. The returned instance
can then be trained on data using the generic £it! method. Calling
the generic predict method on the fitted instance will generate
GLM predictions according to Equation@

la = Laplace(

nn;

A=)\, subset_of_weights=:last_layer
)
fit!(la, data)

Figure[T]shows an example involving a synthetic data set consisting
of two classes. Contours indicate the predicted probabilities using
the plugin estimator (left) and Laplace approximation (right). Re-
lying solely on the MAP estimate, the plugin estimator produces
overly confident predictions. Conversely, the GLM predictions ac-
count for predictive uncertainty as captured by the Laplace poste-
rior.

The package is still in its infancy and its functionality limited at the
time of writing. For example, it currently lacks support for regres-
sion and multi-class problems. It also still works with full Hessian
approximations, as opposed to the less expensive (block-) diago-
nal variants. That being said, choices regarding the package archi-
tecture were made with these future development opportunities in
mind. This should hopefully make the package attractive to other
Julia developers interested in the topic.

4. Conclusions

Laplace Redux is arguably one of the most exciting and promising
recent developments in Bayesian deep learning. The goal of this
project is to bring this framework to the attention of the Julia ma-
chine learning community. The package LaplaceRedux. j1 offers
a useful starting ground for a full-fledged implementation in pure
Julia. Future developments are planned and contributions are very
much welcome.
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