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Section 1

Motivation for a Bayesian Approach



Consider linear classification with linearly separable data {y,, x, ,’)’:1, yn € {-1,1}, x, € RY.

Many separating hyperplanes w fit the data equally well. Which one to choose?
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Consider linear classification with linearly separable data {y,, x,}"_,, y, € {-1,1}, x, € R?.

Many separating hyperplanes w fit the data equally well. Which one to choose?

Solution: Bayesian inference.

- The prior on w is p(w) = N (w|0,a11).
o The posterior on w is then given by
2 =] 0P = p(wly, X Hoynw xn] p(w),
O g©0

where o(x) = 1/(1+ e™). Predictions done with

. , . . ] PYulx, y, X) = /U(y*wa*)p(WIy,X)dw,
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Consider linear classification with linearly separable data {y,, x,}"_,, y, € {-1,1}, x, € R?.

Many separating hyperplanes w fit the data equally well. Which one to choose?

Solution: Bayesian inference.

- The prior on w is p(w) = N (w|0,a11).
o / The posterior on w is then given by
S
2 =] 0P — p(wl|y, X Hoynw x,,] p(w),
O g0

where o(x) = 1/(1+ e™). Predictions done with

: , . . ] PYulx, y, X) = /U(y*wa*)p(WIy,X)dw,
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Consider linear classification with linearly separable data {y,, x,}"_,, y, € {-1,1}, x, € R?.

Many separating hyperplanes w fit the data equally well. Which one to choose?

Predictive Distribution > . ?
Solution: Bayesian inference.

The prior on w is p(w) = N(w|0,a"1).

The posterior on w is then given by

HUYnW xn] ( )7

where o(x) = 1/(1+ e™). Predictions done with

p(wly, X

— . . ] PYulx, y, X) = /G(y*wa*)p(WIy,X)dw,
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Consider linear classification with linearly separable data {y,, x, ,’)’:1, yn € {—1,1}, x, € R9.
Many separating hyperplanes w fit the data equally well. Which one to choose?

Predictive Distribution MAP

%/} B 0 2 4 -4 -2 0 2 4

Difference w.r.t. maximum a posteriori (MAP) solution: higher uncertainty far from data.



Consider linear classification with linearly separable data {y,, x,}"_,, y, € {-1,1}, x, € R?.

Many separating hyperplanes w fit the data equally well. Which one to choose?

Predictive Distribution
Solution: Bayesian inference.

@00 The prior on w is p(w) = N (w|0,a11).

The posterior on w is then given by

HUYnW Xn] ( )’

where o(x) = 1/(1+ e™). Predictions done with

p(wly, X

: , . . ] PYulx, y, X) = /U(y*wa*)p(WIy,X)dw,

Difference w.r.t. maximum a posteriori (MAP) solution: higher uncertainty far from data.
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Section 2

The basics of the Laplace approximation
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Main idea behind Laplace approximation

Approximate complicated and possibly non-normalized distribution with a Gaussian.

One-dimensional Example Method named after Pierre-Simon Laplace, who used this
approach to approximate integrals:

1. Replace integrand with Gaussian.
2. Integrate Gaussian approximation.

201
15F
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Figure source: Bishop, 2008. T =10 0 10 19



The Laplace approximation

Consider a scalar continuous w with

p(D|w)p(w) _ p(D,w)
p(D) p(D)

p(w|D) =

where f(w) = p(w, D) for some data D and Z = p(D) = [ f(w)dw.

Let g(w) = N (w|m, v) be the Gaussian approximation.
How to adjust m and v?

m can be the MAP solution, a mode wyap of p(w|D):

df (w)

dw =N

W=WMAP

Any optimization algorithm can be used for finding wap.

Figure source: Bishop, 2008.

1

q(w)

-1

0 |
m= WMAP
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The Laplace approximation

Given m = wpyap, what should the value of v be?

We consider a truncated Taylor expansion of log f(w) center at wyap:

1 d?

log f(w) ~ log f(wmap) — =a(w — wmap)?, a= ———logf(w)
2 dw? =g
Taking the exponential we obtain:
a . _
f(w) =~ f(wwvap) exp {—i(W = WMAP)2} = G(w) g(w) = N(w|wmvap,a™t),

The exponentiated truncated series is Gaussian. Very easy to normalize!

The normalizer of f(w) is approximated as Z = [ f(w)dw =~ [ §(w)dw = f(wwvap)+/27/a.
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1d example

WMAP
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The multivariate case

Now w is a d-dimensional vector and p(w|D) = Zf(w).

The same principle can be applied. The truncated Taylor series is

1
log f (wmap) = log f(wmap) — E(W — wmapr)' A(wW — wuap),
where A is the Hessian of — log f(w) at wyap, A= — V'V log f(w)]w:wMAP.

Taking the exponential we obtain a multi-variate Gaussian approximation:
1

f(W) ~ f(WMAp)eXp {—E(W = WMAP)TA(W = WMAP))} = C~7(W),

g(w) = N(w|wyap, A1),

7 = / f(w)dw ~ /E](w)dw = f(wymap)(2m)9/?|A|7L/2
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2d example

Log un-nomralized posterior
Log of Gaussian approximation

"-:fv/":;f-'r': —

Figures source: Murphy 2012.
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Example: Bayesian logistic regression

The posterior distribution is

p(w|D) x p(y|w, X)p(w) = f(w), log f(w) = log p(y|w, X) + log p(w).

Let o(x) = 1/(1 + €*) be the logistic function. Then, we have that

log f(w Z log o(yw'x,) — %WTW + const.

Let wpmap maximize f. Using o/(x) = o(x)o(—x), the negative Hessian of f(w) at wyap is

N
Z y,,w Xn o y,,wa,,)x,7 + ol .

We then have g(w) = N (w|wyap, A~1) and log Z ~ log f (wimap) — 3 log |A| + const.
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Probit approximation to the predictive distribution

We need to evaluate p(y«|X«,y) %/p(y*Ix*,W)q(w)dw = /a(y*wa*)N(w|wMAp,A_1)dw

We approximate o(x) with the standard Gaussian cdf @(x) or probit function.

1

We scale ®@(x) to have same slope at origin as o(x):
0.9r

o(x) = ®(Ax), where A>=17/8. o}

Note that ZZ
[@2)N (zlm,v)de = ®(m/Vv+A"2)
Using ®@(Ax) = o(x) on both sides above, we obtain 03[

logistic
- = SCaled probit

fO'(iU)N(ZE‘m,fU)dQZ ~ U<m/\/ 14 %U) 01}

D. J. MacKay. The evidence framework applied to classification networks. Neural computation, 4(5), 720-736, 1992
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Results in logistic regression example

T
p(y*|x*7.y) ~ /O(y*WTX*)N(W|WMAp,A_l)dw ~ 0 YV« WMmAP Xx
\/1 =+ %X*TA—lx*

Laplace Approximation Exact

) |
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Section 3

The Laplace approximation in
Bayesian neural networks
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Bayesian methods for adaptive models

David Mackay. PhD thesis. California Institute of Technology, 1992.

David ). C Mackay

Information Theory, Inference,
and Learning Algorithms

SUSTAINABLE | ENERGY-

WITHOUT THE HOT AIR

David JC MacKay
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Posterior distribution in Bayesian neural networks

Regression problem with Y = (y1, cee ,?JN)T, X = (Xrlf, e ,x%)T , X, € Rd , Yn € R
Let w = (wl, e ,wd)T be the weights of a neural network with output f(X; W) for input x.

The likelihood function is P(¥|X, w) = Hfj:l P(Yn|Xn, W) where

1
2
P(yaln, W) = (£) 7 exp { =5 — f(xai W)}
and f is the noise precision. The prior on w is zero-mean Gaussian and « is the prior precision:

p(w) = (£)* exp {~gww}

The log posterior is then

log p(wly, X) = —g SN qyn — F(xn;w))}2 — Sw!'w + const
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The Laplace approximation in Bayesian neural networks

Let WA p be the maximum a posteriori (MAP) estimate of the network weights. Then

p(wly,X) = q(w) = N(w|wnap, A1)

where
A =VV —logp(wly, X)]WMAP
= BYVLS Y {un — f(xai W)} +al

WMAP

and the approximation to the Iogarithm of the model evidence is given by
N
log p(y|X) ~ Z {Yn — F(Xn; Warap)}~ + 5 log /3
Q d 1 31

— §W§‘4APWMAP + BY loga — B log |A| + const



The Laplace approximation in Bayesian neural networks

Let WA p be the maximum a posteriori (MAP) estimate of the network weights. Then

\0
qu’ p(wly,X) ~ g(w) = N(w|wnriap, A7)

&
where O
X
0@‘\‘ A =VV —logp(wly, X)]WMAP
) N
& V3 Yon=11¥n — f(Xn; W)}Z‘WMAP + ol
and the approximation to the logarithm okthe model evidence is given by
N
o) N
log p(y|X) ~ — B {Yn — f(xXn; Wnap)} 5 log 5
n=1
Q d 1 -

— EWE/IAPWMAP + BY log a — B log [A| + const



The Laplace approximation in Bayesian neural networks

Let WA p be the maximum a posteriori (MAP) estimate of the network weights. Then

2
Qb'z’ p(wly,X) ~ ¢(w) = N(w|wyiap, A7)

&
where o\' <,
*’C\‘\ %
& A =VV —logp(W]y, X)|an Q\s\%
° o
> LN )12
% V3 iyn — f(xXn; W)} ‘ %,
WMAP Oo
and the approximation to the logarithm dk{he model evidence is given by ’))'%
N +
g 2
logp(y|X) = -5
n=1




Approximating the predictive distribution

We can approximate the network function by its linear expansion around wy AP -

fx;w) & f(x;waap) + VW) g (W= Waap) = f(x;w)
The predictive distribution can then be approximated as
P(Ys|%a, ¥, X) = [ p(ys %4, W)p(Wly, X) dw
~ [N (el f(xe; W), 7N (w|wnap, A1) dw
~ [N (Wl f (s W), B~HN (W] waiap, A7Y) dw = N (ys|m, v4)
where
my = f(X4; WMAP)

0. =3+ Vf(xaw)[?

WMAP

A_lvf(X*Q W)‘

WMAP 34



Approximating the predictive distribution

We can approximate the network function by its linear expansion around wyn AP -

Fxsw) = f(x;waap) + VW)l (W= Waap) = f(x;w)
The predictive distribution can then be approximated as
P(yulxi, ¥, X) = [ p(yulxs, w)p(wly, X) dw
~ [N (sl f(xs W), BHN (W]waiap, A7) dw
~ [Nl f(xa W), B7HN (Wwaiap, A7Y) dw = N (y.|ma, v,)

where e Mean is equal to prediction

of MAP solution!
My = f(Xu; WMAP)

_ 1 : T —1 :
Vy = E + Vf(x‘)ﬂw)‘wMAp A Vf(X*,W)‘WMAP 35



Approximating the predictive distribution

We can approximate the network function by its linear expansion around wyn AP -

fw) &~ f(x;wnap) + V(W)

wyar (W= WMAP) = f(x;w)

The predictive distribution can then be approximated as

P, ¥, X) = [ p(yu %4, w)p(wly, X) dw
~ f./\/(y*|f(x*; w), B~ HYN (w|wyap, A1) dw
~ [Nl f(xa W), B7HN (Wwaiap, A7Y) dw = N (y.|ma, v,)

where e Mean is equal to prediction
of MAP solution!

e Uncertainty high when

_ 1 . T —1 . gradient aligns with
Ux = 3 T Vf(X*’VV)“"/’MAP A Vf(x*’w)‘WMAP directions of low curvature 36

my = f(X«; WhnAP)



Predictive distribution examples

1D toy regression problems. Left, 1 hidden layer, 50 neurls, tanh non-linearities. Right,
2 hidden layers, 50 neurons per layer and ReLU non-linearities.

Predictive uncertainty is high in regions with a lack of training data.
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Why use a linearized model for prediction?

We could approximate the predictive distribution by sampling from the Gaussian approximation
using the original neural network for predictions without linearization.

Neil D. Lawrence. Variational Inference in Probabilistic Models. PhD thesis, Cambridge, 2000.

-------- Samples from Gaussian approximation

Average network output under generated
samples, most of which is off scale

————— Output from network using WA P

The linearized model approximation is
critical for good performance in practice!
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Some intuition on what is going on

L(W) Second order )
approximation Why are the predictions with the
linearized model so good?

The linearized predictions do not change
so rapidly as in original non-linear model.

-

More on this later!

WMAP Weights W

A lot of mass from the Gaussian approximation falls into regions of low posterior density.

Samples from these regions will result in very poor predictions with the original non-linear model.

Figure source: Javier Antoran. 39



Tuning the prior precision a

N
Recall that log p(y|X) ~ Z {yn — f(xXn; WMAP)}2 + b} log
d 1
— S whapWaap + 5 loga — = log |A| + const

2 2 2

We can optimize log p(y|X) with respect to & by noting that

d . d 1 —1
L Jog|Al =L 37 log(\ +a) =5, 1 = lrace(A™7)
We have assumed that the eigenvalues A; do not depend on e. log p(y|X) is maximized when
d
o = i where v = Z Ai and we have assumed wyap = 0.
Wiiap WMAP A + do

=1

40



Eigenvalues of

Tuning the prior precision & |A= VIR {ya — Fxai W)

Whiap

+ al

N

Recall that log p(y|X) ~ — g Z {yn — f(Xn; WMAP)}2 4 ) logh
n=1

1
“ 5 log o — 5 log |A| + const

d N
1 —Aii‘a = Trace(A™1)

We have assumed that the eigenvalues A; do not depend on e. log p(y|X) is maximized when

d

v Y
o = where Z and we have assumed —wpap = 0.
WyiAp WMAP 7= — A +«a do

41




Eigenvalues of

Tuning the prior precision @  |a=svvis v — flxuw))?

Whiap

+ ol

1
5 log a — 5 log |A| + const

d _
1 —Aiia = Trace(A™1)

We have assumed that the el§envalues \; do not depend on e. log p(y|X) is maximized when

o= 7 where

T
Wriap WMAP

and we have assumed d—WMAp =0.
Qo

42




Tuning the noise precision B

N
Recall that log p(y|X) ~ Z {yn — f(xXn; WMAP)}2 + b} log
d 1
— %WE/IAPWMAP + B log o — 2 log |A| + const

We can optimize log p(y|X) w.r.t. B by noting that the eigenvalues \; are proportional to B, hence

d\; A\ d _ 1
T - 3 and thus a5 log |A| = dﬁzlog i +a)==

log p(y|X) is maximized when
N -~
N
> n=11Yn — f(Xn; Wnap) }?

b=

43



Example of hyperparameter tuning for regression

1-6-1 Network Without Regularization 1-6-1 Network With Bayesian Regularization

1.5 T T T T T T T T T 15

0.5

_1 .5 1 | 1 1 1 1 1 1 1 _1 .5 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F. D. Foresee and T. H. Martin. Gauss-Newton approximation to Bayesian learning. In ICNN, 1997.
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Generalized Gauss-Newton approximation

The Hessian A = VV —log p(wly, X)|,,,.,, may not be positive definite! What can we do?
We can again approximate the network function by its linear expansion:

Fx;w) = f(x;wWaap) + VW) G (W= wWaap) = f(x;w)

Using this in the Hessian equation gives the generalized Gauss-Newton (GGN) approximation:

LV ; N T
A~ BVVsY . _{yn — f(xn;w)}? . +al =) J.GpJ, +al
MAP
where J, is the n_outputs X d Jacobian matrix given by J, = Vf(xn; W)|WMAP and
G, is the n_outputs X n_outputs matrix G,=VV-— logp(yn\f(xn; WMAP))’ =B

f(Xn;waap)

The GGN is guaranteed to be positive definite when _ log p(y|f(x; w)) 'S convex in Flx;w):

J. Martens and |. Sutskever, Learning recurrent neural networks with hessian-free optimization. In ICML, 2011,
F. D. Foresee and T. H. Martin. Gauss-Newton approximation to Bayesian learning. In ICNN, 1997.



Practical implementation

1. Choose initial values for the hyperparameters e, § and network weights w

2. Train the network using a standard optimization algorithm to obtain wyjap

3. Every few cycles of optimization:
a. Update A = J'GJ + ol given current estimate value of w
b. Compute y using eigen-decomposition of A, thatis, v = Zle)\i/()\i + )
c. Update @ using a = v/w'w

d. Update pusing 8 = (N — )/ 0" {yn — f(xn; W)}
4. lterate 2 and 3 until convergence

If final y is close to d, then network may not be large enough: add more neurons.

If larger network has same final y, then the smaller network was enough.
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Classification problems

For C classes, the network has C outputs, ¥, is a one-hot-encoding vector and

p(yn|f(xn; w)) = Categorical |y, ; Softmax{f(x,,; w)}]
where
exp{ fi(xn; W)}
Soiy exp{ fi(xn; W)}

Similarly as in the problt approxmatlon of the logistic function, we can use

Categorical [y, |p] = szyn i and  [Softmax{f(x,;w)}]; =

P(¥«|Xx, Y, X) = Categorical [y*; Softmax{f(x,; WMAP)/\/I + W/Sdia.g(Z(x*))}]

where we use entry-wise vector operations and (x,) = Vf(x,;w)|. A~ 'Vf(x,;w

WMAP ) |Wh-1AP

We could use sampling, but this is less expensive and works well in practice.

Gibbs, M. N. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, University of Cambridge, September 1997 47



Classification example

MAP solution is overly confident far from data. Laplace approximation is more conservative.
Training Data

MAP predictions Laplace predictions
Class 0 C
=) Class 1 #
= :Q?D g 00O
gf o goot
‘5:3’-;_5_%395—-: e
D p - ::D _:
ap a
O + il
¥ Q’ ° _: gl g
e * ‘D@"&f— ]
< o Erriyn My =5
f’%: ‘;_L C:;‘iﬁI}_ﬁD
& W _ OmB P+
o, »3 Shtof o_ o
_* o - ¥ i Q
5= g O g ¥
m % g ¢ g
D *
el 1 4 % L ey
¥ T @er @ . » ¥
s i'z* :G_
ik *.-:g'
.,‘
1
0 -10

David J. C. MacKay. The evidence framework applied to classification networks. Neural computation 4.5 (1992): 720-736.



Section 4

More recent works on the Laplace
approximation
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Comparison with baselines

Andrew Y. K. Foong, Yingzhen Li, José Miguel Hernandez-Lobato, Richard E. Turner. 'In-Between'
Uncertainty in Bayesian Neural Networks. arXiv:1906.11537, 2019

MFVI FCVI Linearized HMC
Laplace
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avg. test log likelihood

Results on standard splits of UCI datasets

boston concrete energy kin8nm naval power protein wine yacht
-0.5 1.30 4 —
6.5
g ¢ Jf KO - (D I (b -2.8 J;+*® Gj e + ~1.0 *® + MAP 2HL ReLU
-3.0 1 *. ¢ —-2.801
~1,07 8901 ¢ ¥ -0.975
J 1.26 + ‘ -1.54 + MAP 2HL tanh
-2.5 + 294
—2.82 1 ~1.000 A
<35 1.24 - + 5.5 - .
-2.0 1 MFVI 2HL RelU
-2.6 -1.5 # 2.0 :|x e
+ 1.22 1 —-3.0 A SR -1.025 4 x.
3 5.0 1 .
-324 ¢ -254 MFVI 2HL tanh
-2.7 150 -1.050 A
3 -2.0 1 : + -
437 . Ly —1.075 - 1 -3.0 1 aplace linearised 2HL tanh
8- 1.18 :
-3.3 +
=2.5 1 1.16 1 4.0 4 —3.2 1 —2.88 + —1.100 1 =5 + laplace sampled 2HL tanh
-2.9 v v Y v
-3.4 -1.125

Linearized Laplace performs very well on the standard splits, while sampled Laplace does not.
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avg. test log likelihood

Results on gap splits of UCI datasets

boston concrete energy kinBnm naval power protein wine yacht
-3.31 ] -2.8 —0.95 -
2.70 0 1 @ ~3.04 -
s * * ++ * MAP 2HL RelU
1.225 A tD -1.51
. p— -25 -2001¢ ¢ -291'¢ ~3.06 - -1.oo~+ %
B
¢) - 1200 + + MAP 2HL tanh

~2.80 J -400 1 -3.01 —3.08 1 -2.0

~3.5 - . 08

] J —1.05
-2.85 1 ~751 1,175 ~3.101 ° + MFVI 2HL ReLU
—600 51 ¥

~3.6 - ] Y -2.5 1

-2.90 + -100 1 1.150 -3.121| } -1.10 4 MFVI 2HL tanh
. -800 @
' ? =3.21 1 1
"2.95“ _3.7_ -1254 1125" -3.14 4 —30_
-1000 4 -1.15 4 ’ $laplace linearised 2HL tanh

-3.00 -150 - 1.100 —3.31 ~3.16

=2 = -3.5 1 + laplace sampled 2HL tanh
~3.05 1 -175 1.075 - _3.44 -3.18 1 -1.20 1 \

Linearized Laplace avoids catastrophic results on gap splits for energy and naval problems.
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Scaling up with Kronecker products

The GGN can be approximated in a scalable way using Kronecker products @:

auB -+ a,B] (A®B)'=A"'9B"!. (A®B)'=AT®B".
A®B=| : . : |, (A®B)(C®D)=(AC)& (BD).
amB - @y, B VGC(A.) = [alvl, cee3 @ 15A12y: -3 Am2yeeeyAlny.-- aam.n]T

Let h,, a,and W, be the pre-activations, activations and weights for layer ¢/, 1 < ¢ < [, . Then
7 4 ¢l >L >

h) = Wya,_| = (a}_l ® I)vec(Wy)r ag = fe(hy) and fe(+) is the element-wise non-linearity.

2
Let £,, be the minus log-likelihood for the n-th data point and let gr = 82LghL Then
R oh, ' Ohg 5) TR |
the GGN for layer ¢ is G7 = £ — (ay_1at
Y £ Ovec(Wy) gL({)ve(:(W(g) (ac-12¢-1) @ (0hg 9% B, Oh,

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 53



Pre-activation Gauss

Scaling up with Kronecker products Newt°g"7;"atf‘*
The GGN can be approximated in a scalable way using Kronecker products @: Aé
auB -+ a,B] (A®B)'=A"'9B"!. (A®B)'=AT®B".
A®B= ; : , (A®B)(C®D)=(AC)® (BD).
amB - @B vec(A) = (a1, Qm1,@12, oy B2y Qg ,a.,,,‘n]T

Let h,, ay and W, be the pre-activations, activations and weights for layer ¢/, 1 < ¢ < J| . Then

h) = Wya,_| = (ag_l ® I)vec(Wy)r ag = fe(hy) and fo(+) is the element-wise non{inearity.
: I . o oy
Let £,, be the minus log-likelihood for the n-th data point and let gr = ENETNR Then
1 ]

ghy ohy

n

— J T =0
Ovec(Wy) gL({)ve(:(W(g) = (ac-12,-1) ® <0hg

the GGN for layer / is G} =

ohy* . ohy

Ritter, H., Botev, A., & Barber, D. A scalable laplace approximation for neural networks. In ICLR, 2018.
Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020.
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Scaling up with Kronecker products

The pre-activation Gauss Newton matrix can be computed recursively using
g. B£W£+1g23+lW6’+lBéf
The diagonal matrices By, are defined as B, = diag(f,(hy)).

For the whole dataset, the GGN for layer ¢ can be approximated as

N

Ge=)> [(ar1a/,)®G}] ~ Za(—la[_l ® ZQ

=1 n= n—

The posterior covariance A is then assumed block diagonal, one block per layer given by

A) = [Gg em (I'I]_l which can be computed efficiently due to the Kronecker factorization.

Immer, A., Korzepa, M., & Bauer, M. Improving predictions of Bayesian neural nets via local linearization. In AISTATS, 2021. 55



Results on toy problem

(a) KF Laplace (b) Diagonal Laplace (c) Full Laplace

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020.
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Results on toy problem

Predictions made without
linearization

(a) KF Laplace (b) Diagonal Laplace (c) Full Laplace

Botev, A. The Gauss-Newton matrix for Deep Learning models and its applications. PhD thesis, University College London, 2020. 57



Justification for predictions with linearized model

Immer, A., Korzepa, M., & Bauer, M. Improving predictions of Bayesian neural nets via local linearization. In AISTATS, 2021.

The GGN approximation to the Hessian assumes a linearization of the neural network.
GGN is a model approximation, independent of the inference method, e.g. Laplace or VI.

If we use the linearized model for inference, we should also make predictions using it.

The linearized model is f(x; w) &~ f(x; waap) + Vf(x; w)|L (W —wmar) = f(x;w)-

WMAP

The log-posterior is log p(w|D) = 2521 log p(yn|f(%xn; W)) + log p(w).

The predictive distribution is approximated using sampling:

P(Y+|xs, D) &~ /p(y*lf(x*;W))Q( ) dw ~ Zp il f (5 wi)), Wi~ g(w)
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Results Fashion-MNIST and CIFAR10

FMNIST: 3 conv. layers and 3 FC layers. CIFAR10: 9 conv. blocks and average pooling.

Results using Kronecker factor approximations. Prior variance tuned using validation set.

Dataset Method Accuracy 1 NLL | ECE | OOD-AUC 1t
MAP 91.39+0.11 0.258+0.004 0.017+0.001 0.864+0.014

FMNIST Laplace, no linearized 84.42+0.12 0.942+0.016 0.411+o0.008 0.945+0.002
Laplace, linearized 92.25+0.10 0.244+0.003 0.012+0.003 0.955+0.006
MAP 80.92+0.32 0.605+0.007 0.066+0.004 0.792+0.008

CIFAR10 Laplace, no linearized 21.74+0.80 2.114+0.021 0.095+0.012 0.689+0.020
Laplace, linearized 81.37+0.15 0.601+0.008 0.084+0.010 0.843+0.016

Laplace, linearized improves significantly over MAP solution and non-linearized Laplace.
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Tuning hyper-parameters as well

Immer, A., Bauer, M., Fortuin, V., Ratsch, G., & Emtiyaz, K. M. Scalable marginal likelihood estimation for model

selection in deep learning. In ICML, 2021.

After some epochs, update layerwise precision hyperparameters by gradient based optimization of

1
logp(y, X) =~ log p(y[X, w) +log p(w) — 7 log | A

where A approximated using Kronecker products. Done every I epochs after burn-in of B epochs.

cross-validation

KFAC marginal likelihood

Dataset Model | accuracy logLik | accuracy logLik
For ResNets, they use MNIST  MLP 08.22  —0.061 | 98.38  —0.053
fixup instead of batchnorm. CNN 99.40  -0.017 | 99.46  -0.016
FMNIST MLP 88.09 —0.347 89.83 —0.305
CNN 91.39 —0.258 92.06 —0.233
CIFAR10 CNN 77.41 —0.680 80.46 —0.644

ResNet | 83.73 —1.060 | 86.11 —0.595 60




Section 5

Subnetwork inference

Daxberger E., Nalisnick E., Allingham J., Antoran J. and Hernandez-Lobato J. M. Bayesian Deep
Learning via Subnetwork Inference. In ICML, 2021.
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Motivation
Goal: Infer posterior distribution over weights W of deep neural network (DNN)

p(Wly, X) o< p(y|X,W)p(W)

posterior likelihood prior
Problem: Modern DNNs are too big! Even approximate inference is hard!

Existing approaches: Make strong/unrealistic assumptions on posterior,
e.g. full factorization p(Wly, X) ~ [T, q¢(wa)-

This deteriorates the quality of resulting uncertainty estimates!
(Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)

Question: Do we really need to estimate a posterior over ALL the weights?
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Proposed Idea

Due to overparameterization, a DNNs accuracy is well-preserved by a small subnetwork.

How to find those subnetworks? E.g. by pruning (Frankle & Carbin 2019).

before pruning after pruning

pruning
synapses

-——

pruning
neurons

(Han 2015)

Can a full DNN’s model uncertainty be well-preserved by a small subnetwork’s model uncertainty?

Answer: Yes!



Subnetwork inference

Proposed posterior approximation:

Vsly, X) ] o(wr — wp) / \
~q(Ws) [Jo(wr—wi) Ws U {w.}

subnetwork other weights
probabilistic deterministic

P(Wly, X)) = q(W) =

1. How do we obtain the subnetwork posterior approximation ¢(Ws)?
2. How do we set the fixed values w} € R of all remaining weights {w,.},?
3. How do we select the subnetwork weights wg ?
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Laplace Approximation

1. Obtain point estimate over all weights via (MAP) inference:

Laplace approx.

Wirap = arg maxyy [log p(y| X, W) + log p(W)]

2. Infer full-covariance Gaussian posterior over W:

o p(Wly,X) ~ q(W) = N (W;Wyap, H )
(Bishop 2006)

H is the Gauss-Newton approximation of the Hessian of the loss.

e Practically appealing due to simplicity of MAP estimation.
e Not scalable, as H is typically too big in large networks!

e Solution: Select a subnetwork with weights W s on which we apply the Laplace
approximation and keep other weights equal to their MAP point estimates.
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Subnetwork inference

€ MAP Estimation

@\
e



Subnetwork inference

9 Subnet Selection
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Subnetwork inference
@\
g Bayes. Inference ;
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Subnetwork inference

Q Prediction



Questions

1. How do we obtain the subnetwork posterior approximation ¢(Wg)?
Full-covariance Gaussian approximation via Laplace approximation.

2. How do we set the fixed values w; € R of all the deterministic weights {w,}, ?
Just leave them at their MAP estimates.

3. How do we select the subnetwork weights wg ?

Let's see in the next slide!
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Subnetwork selection

Goal: Find subnetwork whose posterior is closest to the full network posterior.
min Wass| full posterior || subnet posterior |
= min Wass[ p(W|y, X) || ¢(W) ]
~ min Wass| N (W; Wyrap, H ') | N (Ws; Wiy ap, HSTI) Hé(wr — Whap) |

Intractable: this depends on all entries of the full network Hessian approximation H.
Assume that posterior factorizes: H is diagonal.

Diagonal assumption for subnetwork selection > diag. assumption for inference

Wasserstein subnetwork selection:
1. Estimate a factorized Gaussian posterior over all weights (with diagonal SWAG).
2. Subnetwork = weights with largest marginal variances in factorized approx. 29




Results on 1D regression
Model: 2-layer NN with 2600 weights. Goal: test ‘in-between’ uncertainty (Foong 2019).

Full Cov (2600)

Diag (2600)

T
-2 0

2

Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)
1 I 1 I
Rand 50% (1300) Rand 3% (78) Rand 1% (26) Final layer (50)
1 I 1 1
-2 0 % 0 2 -2 0 2 -2 0 2

Expressive inference over a small subnetwork preserves more uncertainty than crude
inference over the full network!
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Image classification under distribution shift

Model: ResNet-18 with 11M weights. Subnetwork: just 42K (0.38%) weights.
Baselines: , Diagonal Laplace, MC Dropout, , SWAG, VOGN.
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019)

OGO

Rotated MNIST Corrupted CIFAR10

TN NS S S 2 2 2

\* *-3,:%‘ o e g == Pongee.
_75 s W, oo xS pat | _a ] Dropout —— SWAG s
= { 3 9. Oum@ama) -- voGN e

— T T T T T T T T T T T 1 I I I T T T

0 30 60 90 120 150 180 0 1 2 3 4 5

rotation (°) corruption 74



Additional results for smaller subnetworks

00 .'-.h-
:
et
= 2 2 5 .&‘ \\'."-—‘v._-'--—-'—"——'——'
" .

Lt A~ R R S
N ,“‘A—'"A——‘ e

el || S L e,
~ 5.0 “%-40K -#-300 \\."-»- e

P ! "vap met po-- ~pen=P
—4-10K-8-100 Ymooon. _e=20:—0_ ~ _o
~7.5 43K -8-Ens ——oiagecm St =Ne S Cu

=»—1K -@-Diag

30 60 90 120 150 180
rotation (=)

(a) Rotated MNIST

-2 -¥-40K-#-300
~&—10K-#-100
—3 43K -®Ens
;bl—lK -QI—Diag |

U1

0 1 2 3 4
corruption

(b) Corrupted CIFARI0
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Take-home message

Linearized Laplace subnetwork inference, a new Bayesian deep learning method that
1. can be easily applied post-hoc to any pre-trained model.

2. is more accurate than crude approximations over the full network weights.

3. applies to large neural networks without sacrificing much its quality.

4. can outperform some of the best existing methods for uncertainty quantification.
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Section 6

Adapting the linearized Laplace
model evidence

Slides prepared by Javier Antoran

Antoran J., Janz D., Allingham J. A., Daxberger E., Barbano R., Nalisnick E. and Hernandez-Lobato J. M. Adapting the
Linearised Laplace Model Evidence for Modern Deep Learning. In ICML, 2022.
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Preliminaries: the linearised Laplace method

e A Gaussian can be a very poor approximation to the NN posterior

e But it is a very good posterior for a linear model (in some cases exact)
 h(B, ) =f(0, )+ 0,f(6, )(O—0)

./. \ Affine in 0

Jacobian acts as basis expansion
e New loss &Z,(0) is convex and & &,(0) = th(é) + 10 —0] |325fh(5)
— — — 0

® This conjugate Gaussian-linear model has:

® Feature expansion J( - ) = d, f(é, - ), Design matrix H = 655,” h(é}

e Closed form predictive posterior and marginal likelihood
[Mackay, 1992]
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Some questions one might have

e But wait, how did you find a mode of the NN loss to expand around?

ONe didn’t, we used SGD and hoped for the best

® How did you deal with modern architecture elements, like batchnorm?

ONe used them and hoped for the best

e How did you tune hyperparameters?

» Cross validation — in fact, the choice of Gaussian prior precision A makes a large
difference in performance; it controls the size of the errorbars

e \What about the model evidence?

* We could not get it to work, it consistently choose prior precisions that overestimated
uncertainty

— Why doesn’t it work? 80



Problem illustration

N=Al

2 hidden layer, 2600 parameter, MLP with batchnorm

A =100 A=10 A=5

Largest ./ ;
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Why is this happening?
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On the difficulty of finding a mode of the loss

® In 1992 Mackay did not use stochastic optimisation, early stopping or
normalisation layers

e In modern settings 0 is not a stationary point of & ;

0 0,.ZH0) #£0 = 0,Z(0) #0

Laplace approximations

1.0 1

My(N) =

Log Loss

—1 -
—(110] |3+ logdet(A™'H + 1)) + C

Wrong! Not that wrong?
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The basis function linear model has a well defined optima

o We know that for any regularisation strength A, £, () is convex

e We know that for any linearisation point 8, /# 4(A) is concave

— We can find joint stationary point (6, , A, )

0, € argmin Lp 5, (6) and A, € argmax My, (A).
Z A

Recommendation 1: Keep 6 as linearisation point but

My (N) = S Mo, (V)=

-1 ~1
7(| 10115 + logdet(A™'H + 1)) + C 7(| 16, |15 + logdet(A™'H + 1)) + C
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Following recommendation 1 improves errorbars

A set with M A set with M«
4 - =
2 — —
o _M )
—7 - -
—4 - -
I I I | I I
—1 0 1 2 —1 0 1 2
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Could we find 0 = 0, by optimising our network better?

IR(E*,-))?

>

Wa (h(

BatchNorm FixUp
T - 1.0
40 - 0.5 Trn Loss
35 - N~ | 0a 600 - ValLoss | 0.8
30 7 - 0.6
N wa [ 93 400 4 :j
- 0.2 ~ 0.4 Z
20 - .
L o1 27 - 02
15 - k w,
N
e e e 0.0 0 - N s e 0.0
T T T T T T T T T T
1 60 120 180 240 1 60 120 180 240
NN training epochs

Figure 5. Wasserstein divergence between distributions obtained
when employing M ; and My, as NN training progresses. The
vertical black line indicates optimal early stopping.
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What about the choice of Hessian evaluation point?

My (N) =

-1
—- (16,1 |3+ logdet(A'H+ 1)) + C

Test NLL

Not that wrong?

In fact, correct for regression!

0.25 -

0.20 -

0.15

0.10 -

0.05 -

Hessian
e 0
B 0*

Laplace approximations

ResNet image classification task:
most gains come from setting correct

posterior mean in
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Studying the effect of normalisation layers

Normalised networks:

Let @ = @'+ 6" with 8’ having zero entries in the place of weights to
which normalisation is applied and the opposite is true for 8", then

f@+0",-)=f0+k0",-) for k>0

Definition applies to:
« Batch norm
« Layer norm
» Group norm
* Normalisation-
free ResNets
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The MAP solution does not exist for normalised networks

log p(y1£(6, x)) Z(0)

Normalisation introduces scale invariance
fO@+60",-)=f0+k0",-) for k>0

[16*]]

*- K- N

N © N B O

LA0) = logp(y | f6,x) + 10113 5

invariant not invariant -4

*

1
5 -5 0 5

1
I
1
I
1
1
1
1
I
1
I
1
I
1
1
1
1
1
1
I

0

= L0 +0)> L0+ %9") 5
log p(y | h(6. x)) Z,0)

Linearisation point @ ¥ can never

be a mode of the posterior since
the posterior has no modes

Z,(0) has a well defined mode 6,
— apply recommendation 1

6/116]] 0/110]|



Dependence on scale of linearisation point &

% ()

However, in general, it does!

-5 0 5

Proposition 3. For normalised neural networks, using a
regulariser of the form ||0’||3, + ||60”||%,, with A’ and A"
parametrised independently and chosen according to rec-
ommendation 1, the predictive posterior h(0,-), 6§ ~ Q
induced by a linearisation point ' + k0" is independent of
the choice of k > 0.

Recommendation 2: learn an independent regulariser for
each normalised group of weights 0", i.e.

logz(0) & A'||0/[ 17+ ). A™][0®]

n

k does not affect NN predictions so it should
not affect the predictive variance!

A* =2l

- ‘;,,; s e =1

A* = diag([A1, A2, A3])

4 = — k:l
k=2
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Systematic analysis (46k param models)

Table 1. Validation of recommendations across architectures. All results are reported as negative log-likelihoods (lower is better). In each
column, the best performing method is bolded. For each M, if single or multiple A optimisation performs better it is underlined.

T-FORMER CNN RESNET ~ PRE-RESNET FIXUPC  U-NET
M single A 0.162 + 002 0.025 0000 0.017 0000 0.017 -+ 0.000 0.055 + 0006 —
O multiple s I 0.162 002 0.025 0000 0.016 0001 0.016 - 0.000 0.061 0005 -2.240 + 0027 I
single A 0.310 <0060 0.253 <0001 0.252 + 0006  0.220 + 0.004 0.153 <0021 —

¢  multiple As  0.162 +0022  0.205 +0002  0.236 <0005 0.239 = 0.004 0.200 + o018 -1.703 +0.023

Recommendation 1 + Recommendation 2 is best in all cases

* Fixup is a non-scale invariant alternative to normalisation layers so
recommendation 2 does not apply
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Validation on ResNet-50 (23M parameters)

Table 2. Test negative log-likelihoods for ResNet-50 on CIFAR10.

BATCHNORM  FIXUP
M single A -0.773 -+ 0.004 -0.744 -+ 0.000
Ousimpie multiple As__=0.778 + 0002 -0.801 - 0.000
M single A -0.645 -+ 0.005 -0.563 -+ 0.002
Ot multiple As  -0.639 -+ 0.000 -0.641 -+ 0.001
M single A -0.269 + 0.004 -0.387 +0.000
0 multiple As  -0.271 + 0.004 -0.437 -+ 0.000

Recommendation 1 + Recommendation 2 is best in all cases

We employ standard KFAC approximation for scalable Hessian computations




Wrapping up: treat your NNs as kernels!

e |inearised Laplace should not be naively applied to modern NNs.

e Every linearisation point 0 defines a tangent linear model. Linearised
Laplace uses this model to provide errorbars. Choosing
hyperparameters using this model’s evidence avoids pathologies.

e |s the tangent linear model a good surrogate for the NN?

e For NNs with linear dense output Iayers,f(g’, + ) isin the linear span
of the Jacobian basis expansion J( - ) = dyf(0, - )

e Furthermore, for normalised networks with dense output layers:

e Linearisation simplifies to #(8, - ) = J( - )6, 8 ~ A4(0, A) and thus
induces a GP prior f~ GP(0, JA~!JT)
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Section 7

Case study: X-ray image reconstruction

Slides prepared by Javier Antoran

Antoran J., Barbano R., Leuschner J., Hernandez-Lobato J. M., Jin B. A Probabilistic Deep Image Prior for Computational
Tomography, arXiv:2203.00479, 2022
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A brief primer on inverse problems

e Consider the setting ys=Ax+1n, n~ 40, o2I) and

® We observe ys € R% and are tasked with recovering x € R%, and
d,>d,

CROSS VIEW

X-ray source

Detector cells

e Clearly the problem is ill posed
e Traditionally, x is estimated through regularised reconstruction

e Can we design a Bayesian prior p(x) to solve this task?



The “deep image prior” for inverse problems

e Standard solution: “Deep image prior”

argmin,, (y; — Af(0))* + A TV(f(9))

data fit classical
regulariser

Can be interpreted as a MAP objective given a
prior that constrains reconstructions to be the
output of a U-net and have low TV

J(0)

1 128 128 1

=

4 t

- -

== 1x1 conv + group norm + leaky ReLU
==p bilinear upsampling
==p 3x3 conv with stride 2 + group norm + leaky ReLU
==p 3x3 conv + group norm + leaky ReLU
1x1 conv
==p layer norm + 2x (3x3 conv + group norm + leaky ReLU)
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From regularised reconstruction to Bayesian inference

e Can build unnormalised prior p(f) o exp(—ATV(f))
e Normalising constant does not admit closed form
e Hessian is 0 almost everywhere =— can’t use Laplace

e |dea: build surrogate Gaussian prior with a covariance kernel that
enforces TV smoothness

aTV(f)
774\

f~NQOKN), A~ p)=EXp(TV(f);4)

TV-PredCP Fact. Gauss.
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Building a probabilistic deep image prior

1.Train U-net with standard objective: (ys—A F(0))* + TV(f(0))

2.Linearise around some acceptable parameter setting 0

3.Build Bayesian hierarchical model

SIR S S
oA

Vs~ NAf, ayD),  f~ N0, JATIT), A~ p(A) = Exp(TV(f); 1)

4.Optimise hyperparameters with marginal likelihood

5.Make predictions (cheap because dy < d,dy)
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Optimising hyperparameters with the marginal likelihood

Automatic Relevance Determination
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std-dev

Bayes DIP (TV-MAP)

DIP-MCDO

PSNR: 23.490 dB; SSIM: 0.7339 ‘ log-likelihood: 0.8699
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Calibration comparison

marginal std-dev
102 -
} UG |x—x*|
10l L1 "5 std-dev - Bayes DIP
1 L,
i
By
100 b
2 "
= e
8 10—1 - l,l
el e L
1
102 -,
1t
i,
Al
1073 i
i
17
I 1 I : I 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Lin Laplace

a1
(=}

N
a1

error quantiles
|
& o

=50

calibration: Q-Q

= Bayes DIP
DIP-MCDO

T T T
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-]
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Take-home message 2: use deep learning to build specialised kernels

e We can obtain very powerful task-specific kernels by
training a NN to solve a task and then linearising it.

® Once the network is trained, we the tangent linear model
f~ GP(0, JA~'JT) provides us with uncertainty
estimates and a model selection objective.
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Thanks!



