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Abstract

Baayen et al. (2019) introduce the Linear Discriminative Learning (LDL) and
give an implementation of LDL in R, the WpmWithLdl (Baayen et al., 2018a).
It works well for modest-size datasets, for example, a Latin dataset with 672
inflectional verbs. However since WpmWithLdl has not been optimized, it takes
days to process large datasets and sometime even crashes because it runs out of
memory. Julia natively supports Linear Algebra and computes faster for var-
ious matrix operations compared with what WpmWithLdl implemented, so we
re-implement Linear Discriminative Learning in Julia and give three worked ex-
amples on Latin, French and Estonian using Judiling. In JudiLing, the model
performs much faster and no longer runs out of memory for larger datasets. We
also present present two new path finding algorithms where one (learn paths)
can provide positional learnablities and the other (build paths) restricts can-
didate cues to decrease the number of candidate paths. While maintaining
the same accuracy as in WpmWithLdl, JudiLing speeds up the process time and
makes it possible to study on much larger datasets.

1 Introduction

Many studies introduce the morpheme as the smallest linguistic unit under the
assumption that words are built from morphemes. According to Plag (Plag,
2018), for example, the word unhappy is build from three morphemes: hap
is a root which cannot be analyzed further into morphemes; −y is affix where
it can attach to a base (root) hap to form a derivative happy; Then, un− is
a suffix which can attach in front of another base, in this case, happy. Other
complex word colonialization are combined with more morphemes: colony,
−al, −ize and −ation.

∗Special thanks to Prof. Dr. Douglas M. Bates helping solving matrix inversion using
Cholesky Decomposition and Julia coding styles.
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However, other studies argue that morpheme is also problematic. Also in
Plag’s book, he points out that one major problem with the morpheme is that
not all morphemes instantiate a one-to-one mapping from meaning to form.
For example, the verb ”water” derived from the noun ”water” without adding
anything so here a morphemic approach can be rescued by positing zero mor-
phemes. For another example, a so-called causative morpheme ”make X”, such
as ”humid” to ”humidify” (make humid) and ”black” to ”blacken” (make black),
doesn’t fit well with the pattern of ”fall” and ”fell” (make fall).

In this case, Baayen et al. (2019) introduces a novel model, Linear Discrim-
inative Learning (LDL), and then provides a step-by-step introduction to its R

implementation (Baayen et al., 2018a). This study presents a loss-free model
for 672 inflected Latin verbs without morphemes play any role in the model.

Since the implementation of LDL in R has not been optimized, it quickly
runs into its limits. When studying this model with large datasets, the im-
plementation spends days to compute and sometimes crashes because it runs
out of memory. Therefore, we have re-implemented this model in Julia. Com-
pared with R, Julia has many advantages, but one major advantage is that Julia
natively supports Linear Algebra computations like matrix multiplication and
matrix inversion, operations which LDL makes heavy use of.

In WpmWithLdl, Baayen et al. (2018a) use a simple path algorithm (Csardi
et al., 2006) to find all candidates paths for producing a word given its n-phones.
This algorithm works initially well for datasets of modest size. However, there
are two major issues found in later studies: 1) it doesn’t handle paths with cycles
well since paths with cycles will lead to infinite number of paths; 2) it doesn’t
scale up to larger datasets because as the number of candidate cues increas-
ing, the number of candidate paths increases exponentially. Therefore we first
introduce the concept of timesteps to implement paths (including paths with
cycles) and second we develop two new paths finding algorithms, learn paths

and build paths. The first algorithm provides positional learnablities for each
timestep while the other algorithm further restricts the number of candidates
cues by only considering cues for the k nearest form neighbors.

In what follows, section 2 introduces LDL model in detail with a toy example
corpus, section 3 describes the bottlenecks of the R implementation and then
gives solutions for those bottlenecks, section 4 describes other useful features
implemented in JudiLing, section 5 further provides three worked examples
using JudiLing and finally section 6 presents the take home messages for this
implementation.

2 Linear Discriminative Learning (LDL)

Linear Discriminative Learning (LDL, Baayen et al., 2018a, 2019) is a compu-
tational model that makes use of a wide two-layer network, without any hidden
layers. This model aims to construct an interpretable two-directional language
model for both comprehension and production. On the comprehension side,
this model learns in one step the mapping from word forms to word meanings,
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Table 1: A toy example of a small lexicon with four words. Their forms and
meanings (including base and inflectional meanings) are provided here.

Words Features
walk WALK, PRESENT
walks WALK, PRESENT, SINGULAR
walked WALK, PAST
walked WALK, PAST, PARTICIPLE

while on the production side, the model learns to map word meanings onto word
forms. To understand how LDL works, we use a toy example (Table 1) with
four words: walk, walks, walked (past) and walked (participle). In what follows,
we introduce the representations of words’ forms and meanings, the model’s
underlying mathematical algorithms, and the evaluation of model performance.

2.1 Form and meaning representations

In LDL, both word forms and word meanings are represented by numeric vectors.
For word forms, we extract sublexical cues from all words and represent the
presence and absence of these cues in a given word with one-hot encoding. For
our toy example, here we use letter trigrams as sublexical cues. A word form
matrix, denoted by C, can now be constructed:

C =


#wa wal alk lk# lks ks# lke ked ed#

walk 1 1 1 1 0 0 0 0 0
walks 1 1 1 0 1 1 0 0 0
walked 1 1 1 0 0 0 1 1 1
walked 1 1 1 0 0 0 1 1 1

. (1)

The columns in C list all the letter trigrams in the dataset, and the rows rep-
resent words’ form vectors. The word walks, for example, contains the first five
letter trigrams listed in the column names of C, which are coded with ones. All
other trigrams are coded with zeroes.

With regard to meaning representations, word embeddings such as produced
by word2vec (Mikolov et al., 2013), glove (Pennington et al., 2014), fasttext (Bo-
janowski et al., 2016), etc. can be used. However, in order to better understand
morphological processing, in our model special consideration is given to the con-
struction of semantic vectors for morphologically complex words. As illustrated
in Table 1, the meaning of walks is constructed from the base meaning walk,
and two inflectional meanings, present and singular. In the framework of
discriminitive learning (Baayen et al., 2011, 2016), these basic meanings (rep-
resented by small caps) are referred to as lexomes. As the three lexomes all
contribute the meaning of walks, we therefore construct the semantic vector
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of walks (henceforth
−−−→
walks) by summing up the semantic vectors of the three

lexomes:

−−−→
walks =

−−−→
walk +

−−−−−−→
present +

−−−−−−−→
singular.

For our toy example, we simulate numeric vectors (here of length 6) from a
normal distribution for all the lexomes, which we bring together in a lexome
matrix L.

L =



S1 S2 S3 S4 S5 S6

WALK −1.52 −0.69 0.05 −0.31 1.60 0.23
PRESENT −0.92 −0.86 1.30 0.01 0.22 −0.58

PAST −0.69 0.98 2.94 −0.06 1.10 2.10
SINGULAR −0.01 0.69 −0.26 −0.56 −0.89 −1.09
PARTICIPLE −1.37 −0.98 0.81 0.01 0.56 0.31



Given L, we can then construct semantic vectors for all words, which are given
by the rows of the semantic matrix S:

S =


S1 S2 S3 S4 S5 S6

walk −2.44 −1.55 1.35 −0.30 1.82 −0.35
walks −2.45 −0.86 1.09 −0.86 0.93 −1.44

walkedpast −2.21 0.29 2.99 −0.37 2.70 2.33
walkedpart −3.58 −0.69 3.80 −0.36 3.26 2.64

.
2.2 Comprehension and production networks

Given word form representations C and meaning representations S, the model
learns to map from one representation to the other. For comprehension, word
forms are mapped onto meanings, and for production, word meanings are mapped
onto word forms. This is formally represented by (2) and (3), where F and G
denote the comprehension and production networks respectively:

CF = S, (2)

SG = C. (3)

The mapping F is obtained by solving (2), which can be accomplished with the
help of the generalised inverse of C, henceforth C−1:

C−1CF = C−1S,

F = C−1S. (4)
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Below, we will discuss a computationally more sophisticated way of solving
(2). For our toy example, we obtain the F matrix, as presented in (5). F is
equivalent to a two-layer network such that every cell (fij) of F specifies the
connection weight between a given cue i and a given semantic dimension j.

F =



S1 S2 S3 S4 S5 S6

#wa −0.71 −0.31 0.47 −0.13 0.50 −0.04
wal −0.71 −0.31 0.47 −0.13 0.50 −0.04
alk −0.71 −0.31 0.47 −0.13 0.50 −0.04
lk# −0.30 −0.61 −0.05 0.09 0.31 −0.24
lks −0.16 0.04 −0.15 −0.23 −0.29 −0.66
ks# −0.16 0.04 −0.15 −0.23 −0.29 −0.66
lke −0.25 0.25 0.67 0.01 0.49 0.87
ked −0.25 0.25 0.67 0.01 0.49 0.87
ed# −0.25 0.25 0.67 0.01 0.49 0.87


(5)

The production network G is obtained in the same way:

S−1SG = S−1C,

G = S−1C. (6)

A cell gij in G gives us the weight for cue j given semantic dimension i.

G =



#wa wal alk lk# lks ks# lke ked ed#

S1 0.07 0.07 0.07 0.45 −0.35 −0.35 −0.03 −0.03 −0.03
S2 0.19 0.19 0.19 −0.40 0.36 0.36 0.23 0.23 0.23
S3 0.01 0.01 0.01 −0.37 0.23 0.23 0.15 0.15 0.15
S4 −0.16 −0.16 −0.16 0.25 −0.33 −0.33 −0.08 −0.08 −0.08
S5 0.70 0.70 0.70 1.08 −0.43 −0.43 0.05 0.05 0.05
S6 −0.38 −0.38 −0.38 −0.26 −0.22 −0.22 0.11 0.11 0.11



The underlying mathematics is the same as Multivariate Multiple Regression
where we can obtain the predicted matrix (Ŝ and Ĉ) by multiplying input
matrix (C and S) with weights (F and G). When observing (Ŝ and Ĉ), they
are not exactly the same as (C and S) just as in any regression model, we
seek to obtain the best possible estimate, but have to accept that there is by-
observation noise that we cannot explain. We thus need further analysis of the
predictions as discussed in subsection 2.3 and 2.4.
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2.3 Evaluating comprehension

To evaluate the performance of the comprehension model, we first multiply C
by F to obtain the predicted semantic matrix Ŝ,

Ŝ = CF , (7)

resulting in the following matrix for our example:

Ŝ =


S1 S2 S3 S4 S5 S6

walk −2.44 −1.55 1.35 −0.30 1.82 −0.35
walks −2.45 −0.86 1.09 −0.86 0.93 −1.44

walkedpast −2.90 −0.20 3.40 −0.37 2.98 2.49
walkedpart −2.90 −0.20 3.40 −0.37 2.98 2.49

.
Comparing Ŝ and S, we can see that the predicted semantic vectors are very
similar to the gold standard ones. This is due to the small size of the current
toy example. We shall see below that as datasets grow bigger, Ŝ and S will be
less similar.

To quantify prediction accuracy, we calculate the correlations of a given
predicted semantic vector with all the gold standard semantic vectors in the
dataset. These correlations are presented in Table 2. For every predicted se-
mantic vector, we take the gold standard vector with which it is correlated the
most as the meaning that the model recognizes. For example, as ŝwalk and
swalk have the highest correlation (r = 1), swalk is selected as the predicted
meaning.

Table 2: Pair-wise correlations between the predicted semantic vectors and the
gold standard semantic vectors.

swalk swalks swalkedpast
swalkedpart

ŝwalk 1.000 0.922 0.866 0.908
ŝwalks 0.922 1.000 0.798 0.815
ŝwalkedpast

0.893 0.810 0.997 0.998
ŝwalkedpart

0.893 0.810 0.997 0.998

Homophones such as walkedpast and walkedpart share the same form vector c
but map onto different semantic vectors spast and spart. Precisely because they
have the same form, homophones’ predicted semantic vectors ŝpast and ŝpart
are identical, and hence their correlations with the corresponding gold standard
vectors spast and spart are identical as well. However, in general the correlation
of s and ŝ will be larger for one of the homophones, in the present example, this
holds for swalkedpart. This would suggest successful recognition for walkedpart

but unsuccessful recognition for walkedpest. However, in single word recognition
tasks, it is impossible to tell apart the meanings of homophones. Arguably,
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model performance can be considered to be correct if one of the homophone
meanings is correctly retrieved. Therefore, the function in the JudiLing package
that evaluates comprehension accuracy provides an option for lenient evaluation
of homophones (see Section 3.2).

2.4 Evaluating production

Similar to the evaluation of the comprehension model, for production we first
obtain the predicted form matrix Ĉ with equation 7. Unlike C with binary
values of 0’s and 1’s (equation 1), Ĉ consists of real-valued vectors, as presented
in equation 9.

Ĉ = SG (8)

Ĉ =


#wa wal alk lk# lks ks# lke ked ed#

walk 1.0 1.0 1.0 1.0 −0.0 −0.0 −0.0 −0.0 −0.0
walks 1.0 1.0 1.0 0.0 1.0 1.0 −0.0 −0.0 −0.0

walkedpast 1.0 1.0 1.0 0.0 −0.0 −0.0 1.0 1.0 1.0
walkedpart 1.0 1.0 1.0 −0.0 0.0 0.0 1.0 1.0 1.0


(9)

Although it is possible to evaluate Ĉ in the same way as Ŝ, i.e., locating the
gold standard vector with the highest correlation, this method is however not
precise enough. This is because these form vectors are unordered, and we do
not know whether the predicted form vectors can actually generate the intended
forms. For the small corpus above, the model is good enough to generate perfect
Ĉ in order to form one and exact one path for each word. However, considering
a second language learner who has strong background in verb declensions in
numbers. Therefore, he wants to know about the correct form of walk for
past tense and singular who already knows that English words have to be
inflected for number, but who has never encountered the form ”walked” before.
Can the model correctly predict this form?

We first construct the pertinent semantic vector s by summing up its lexome
vectors (10).

s =
−−−→
walk +

−−−→
past +

−−−−−−−→
singular

=
[ S1 S2 S3 S4 S5 S6

−2.90 −0.20 3.40 −0.37 2.98 2.49
]

(10)

We as English speakers may know that the form is exactly the same as the past
tense form walked, but the model doesn’t know that because it has never been
trained on this word. However, we can use equation (8) to obtain a predicted
form vector:
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ĉ = SG

=
[ #wa wal alk lk# lks ks# lke ked ed#

1.0 1.0 1.0 −1.0 1.0 1.0 1.0 1.0 1.0
]
. (11)

We then find that the predicted form vector ĉ could potentially form two possible
paths, walks and walked. To deal with the ordering issue, Baayen et al. (2019)
adopts a path-finding algorithm in the graph theory. As a first step, the cues
with activation above a given threshold are collected. Next, all possible paths
are constructed for these cues based on an adjacency matrix. By way of example,
for our toy example, the adjacency matrix A, shown in (12), is a 9 × 9 matrix,
with all the trigrams in the dataset listed in both the rows and columns. The
binary value in A, aij , indicates whether cue i can be attached to cue j. The
trigram lk#, for example, can follow alk (a93 = 1) but not lks (a94 = 0).

A =



#wa wal alk lk# lks ks# lke ked ed#

#wa 0 0 0 0 0 0 0 0 0
wal 1 0 0 0 0 0 0 0 0
alk 0 1 0 0 0 0 0 0 0
lk# 0 0 1 0 0 0 0 0 0
lks 0 0 1 0 0 0 0 0 0
ks# 0 0 0 0 1 0 0 0 0
lke 0 0 1 0 0 0 0 0 0
ked 0 0 0 0 0 0 1 0 0
ed# 0 0 0 0 0 0 0 1 0


(12)

Now to construct all possible paths, we only consider trigrams that receive
high activation. Trimming as such is not strictly necessary, but for reasons
that will become clearer later, the thresholding parameter was introduced in
the R implementation of LDL (Baayen et al., 2018b) to reduce computational
costs. Take the predicted form vector ĉ (11) for example. With a threshold of
0.1, eight trigrams are left, including #wa, wal, alk, lks, ks#, lke, ked and ed#.
Based on A, a trigram graph is constructed, as shown in Figure 1. The trigrams
are placed on the vertices, and the directed edges indicate valid continuations
from one trigram to another.

According to Figure 1, two candidate forms can be found. One is walked,
with a trigram path starting from #wa, followed by wal, alk, lke, ked and finally
to ed#. The other predicted form is walks, which has the same first three
trigrams as the former path, but continues with lks, and ends with ks#.

The last step for production evaluation is to determine which candidate
form (when there is more than one) should be selected as the model’s predicted
form. The procedure in (Baayen et al., 2018a) is to select the candidate form
that resonates most with the intended meaning. Specifically, we create another
predicted form matrix for the candidate forms (Ĉ, 13), and then multiply it by
the comprehension network F to generated the predicted semantic matrix for
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Figure 1: Possible paths for ĉ in a directed triphone graph.
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these candidate forms (Ŝ, 14). Following the steps for evaluating comprehension
(cf. Section 2.3), we calculate the correlations between the predicted semantic
vectors of the candidate forms with the intended semantic vector s (10). As
presented in Table 7, ŝwalked has a higher correlation score than ŝwalks. The
model then picks walked as the predicted form, which is the correct form. This
procedure is referred to as ‘synthesis-by-analysis’ in (Baayen et al., 2018a).

Ĉ =

[ #wa wal alk lk# lks ks# lke ked ed#

walked 1 1 1 0 0 0 1 1 1
walks 1 1 1 0 1 1 0 0 0

]
(13)

Ŝwalk =

[ S1 S2 S3 S4 S5 S6

walked −2.90 −0.20 3.40 −0.37 2.98 2.49
walks −2.45 −0.86 1.09 −0.86 0.93 −1.44

]
(14)

Table 3: Pair-wise correlations between predicted path semantic vectors and
original semantic vector.

swalked selected correct
ŝwalked 0.93 3 3

ŝwalks 0.83 7 7

3 Bottlenecks and new implementation

LDL was first implemented in R (R Core Team, 2020). With the package
WpmWithLdl (Baayen et al., 2018b), a number of studies have so far been done to
model various comprehension and production tasks in different languages (e.g.,
Chuang et al., 2020a,b,c; Heitmeier and Baayen, 2020; Baayen and Smolka,
2020). While the package generally works well, problems however arise when
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one intends to work with bigger datasets. In particular, modeling big datasets
with WpmWithLdl becomes prohibitively expensive in terms of both computing
time and resources. In what follows, we will discuss three major bottlenecks of
WpmWithLdl, and how these difficulties are now dealt with by the new imple-
mentation of LDL in Julia (Bezanson et al., 2017).

3.1 Matrix inversion and sparsity

As mentioned previously, to obtain F and G, we need the inverse of C and
S, i.e., C−1 and S−1 (cf. equation 4 and 6). As inverting a large matrix
is computationally expensive, Baayen et al. (2018a) first make C and S into
square matrices by multiplying with their respective transposed matrix. The
inversion can then be done on smaller matrices of CtC and StS. Following
this method, we can likewise obtain F and G. The formulae are provided in
equations (15) and (16).

(CtC)−1CtCF = (CtC)−1CtS

F = (CtC)−1CtS (15)

(StS)−1StSG = (StS)−1StC

G = (StS)−1StC (16)

In WpmWithLdl, the Moore-Penrose pseudoinverse is calculated with the ginv
function from the MASS (Venables and Ripley, 2002) package. An equivalent
function in Julia is the pinv function from the Linear Algebra standard li-
brary in Julia. Figure 2 shows that calculating pseduoinverses is already gen-
erally faster in Julia (the orange line) than in R (the blue line). To speed up
the calculation further, in JudiLing, we incorporate Cholesky decomposition
(factorization), also provided by the Linear Algebra package. This reduces
computing time substantially, as shown by the green line in Figure 2.

Another novelty of JudiLing is to take the sparsity of matrices into account.
In LDL, not all matrices are of equal sparsity/density. The semantic matrix S,
for example, is usually dense, whereas the form matrix C is often very sparse.
This is because among all the sublexical cues in a language, words usually only
contain a small number of these cues. This results in a lot of 0’s and few 1’s
in C. In Julia, matrices can be represented/coded with either a regular dense
array format or a sparse format, the latter of which is supported by the Sparse

Arrays in Julia standard library. Importantly, the proper matrix format affords
efficient matrix operations including inversion. Figure 3 presents the amount
of time saved when inverting matrices of different densities by using the sparse
format in Julia. When a matrix is small, the inverting time is practically the
same no matter which format is used. Nevertheless, when dealing with big
matrices, the advantage of the sparse format gradually emerges, and the amount
of time saved, especially for really sparse matrices (the blue and orange lines),
grows exponentially. In the light of this, in JudiLing, we always use the sparse
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format for C and the dense format for S to optimize matrix inversion. As
for other matrices such as F and G, the density of which is less predictable, a
decision function is designed to automatically determine the appropriate format.

Figure 2: Processing time for inverting matrices of varying sizes in R and in
Julia. Note that the y-axis presents time in a logarithmic scale.

Figure 3: Time saved for matrix inversion in Julia when matrices of different
densities and sizes are coded in the sparse format.
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3.2 Pair-wise correlation

The second bottleneck pertains to evaluation. As mentioned previously in Sec-
tion 2.3 and 2.4, the evaluation of both comprehension and production models
involve calculating correlations. In WpmWithLdl, this is done with the cor func-
tion from the stats standard library in R. Similar to the problem of matrix
inversion, computing time increases exponentially when big datasets are dealt
with. For JudiLing we use the cor function from the Statistics in Julia

standard library . A comparison of the R and the Julia function is presented in
Figure 4. Across datasets of all sizes, calculating correlations is faster in Julia.
Note that the y-axis is presented in a logarithmic scale. Thus, for a dataset con-
tains 8000 words, for example, while calculation takes more than 100 seconds
in R, it takes only less than 10 seconds in Julia. Apparently the Julia code
has been optimized to calculate correlations, which helps JudiLing to conduct
more efficient evaluation to a large extent.

Figure 4: Time taken to calculate pair-wise correlations for datasets of varying
sizes.

3.3 Path Finding Algorithm

We mentioned in Section 2.4 that part of the evaluation of production involves
finding the correct orders to sequence the sublexical cues (i.e., letter trigrams).
In WpmWithLdl, the order of trigrams is searched for by applying the path-finding
algorithm in the graph theory (cf. Figure 1) from igraph package (Csardi
et al., 2006). The major problem with this algorithm is that the number of
possible paths for a word can easily reach hundreds or even thousands. This
is because most trigrams, except for the word-initial and word-final ones, are
not bound by positions. Thus, the non-boundary trigrams can occur in any
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position of a word, given the right neighboring trigrams. This problem is even
aggravated when there cycles in a given word. By way of example, Figure
5 presents the trigram path of the word sententious. The graph in the left
panel shows the correct order, where a cycle begins and ends with the trigram
ent. Crucially, the cycle can repeat multiple times. With one extra repetition
(middle panel), the form is sentententious; with two extra repetitions (right
panel), we obtain the form sententententious. In other words, when cycles are
allowed for path construction, the graph algorithm will find an infinite number
of paths if no restrictions are imposed. WpmWithLdl therefore first obtains all
possible shortest paths, and then implements various heuristics to include paths
with short cycles. For larger datasets, unfortunately, this algorithm becomes
prohibitively expensive.

Figure 5: The trigram path of the word sententious and two pesudo-words
sentententious and sententententious, with an internal cycle.
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To address this issue, in JudiLing we design two new path-finding algo-
rithms, learn paths and build paths. The two algorighms will be introduced
in Section 3.3.1 and 3.3.2 respectively.

3.3.1 The learn paths algorithm

The major difference between learn paths and the graph-based algorithm is
that this new algorithm takes positional information into consideration. Given
that the model learns to predict trigrams at different positions, there is an
infinite number of paths to be traced and maybe potentially infinite.
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To do so, we first copy the form matrix C for t times, where t stands for the
number of trigrams of the longest word in the dataset. In other words, t denotes
the longest path possible in the dataset. In our toy example, the longest word
is walked, thus t = 6. The copied matrices, referred to as Yt, code the presence
of the trigrams of all the words at position t. For example, the first trigram of
all the words in the toy dataset is #wa. As a consequence, in Y1 (Equation 17),
the first column (#wa) receives the value 1 in all the rows. At position 4 (Y4,
Equation 20), walk reaches its last trigram lk#. The fourth trigram of walks is
lks, and that of walked and walked3rd is lke. At the final position (Y6, Equation
22), since walk and walks have no trigrams at this position, their vectors contain
all 0’s. For walked and walked3rd, their last trigram ed# is coded as 1.

Y1 =


#wa wal alk lk# lks ks# lke ked ed#

walk 1 0 0 0 0 0 0 0 0
walks 1 0 0 0 0 0 0 0 0

walkedpast 1 0 0 0 0 0 0 0 0
walkedpart 1 0 0 0 0 0 0 0 0

 (17)

Y2 =


#wa wal alk lk# lks ks# lke ked ed#

walk 0 1 0 0 0 0 0 0 0
walks 0 1 0 0 0 0 0 0 0

walkedpast 0 1 0 0 0 0 0 0 0
walkedpart 0 1 0 0 0 0 0 0 0

 (18)

Y3 =


#wa wal alk lk# lks ks# lke ked ed#

walk 0 0 1 0 0 0 0 0 0
walks 0 0 1 0 0 0 0 0 0

walkedpast 0 0 1 0 0 0 0 0 0
walkedpart 0 0 1 0 0 0 0 0 0

 (19)

Y4 =


#wa wal alk lk# lks ks# lke ked ed#

walk 0 0 0 1 0 0 0 0 0
walks 0 0 0 0 1 0 0 0 0

walkedpast 0 0 0 0 0 0 1 0 0
walkedpart 0 0 0 0 0 0 1 0 0

 (20)

Y5 =


#wa wal alk lk# lks ks# lke ked ed#

walk 0 0 0 0 0 0 0 0 0
walks 0 0 0 0 0 1 0 0 0

walkedpast 0 0 0 0 0 0 0 1 0
walkedpart 0 0 0 0 0 0 0 1 0

 (21)
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Y6 =


#wa wal alk lk# lks ks# lke ked ed#

walk 0 0 0 0 0 0 0 0 0
walks 0 0 0 0 0 0 0 0 0

walkedpast 0 0 0 0 0 0 0 0 1
walkedpart 0 0 0 0 0 0 0 0 1

 (22)

As a next step, the model learns to predict the positional form matrices Yt from
the non-positional form matrix C. The equations are presented in (23).

CMt = Yt

Mt = (CtC)
−1

CtYt (23)

And the predicted positional form matrices Ŷt are then obtained by multiplying
the predicted non-positional form matrix, Ĉ, by Mt.

Ŷt = ĈMt

Take the past tense and singular form (walked) metioned in section 2.4
for example. To obtain the predicted trigram vector at position 1, we multiply
ĉ by M1, which gives ŷ1, shown in 24.

ŷ1 =
[ #wa wal alk lks ks# lke ked ed# lk#

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]

(24)

At position 1, only one trigram receives high activation, i.e., #wa, assuming
the threshold is set to 0.1. We therefore only keep this trgiram as a candidate
trigram at position 1. We repeat the same procedure to obtain ŷt at positions
2 to 6. The resulting vectors are shown in equations 25 to .

ŷ2 =
[ #wa wal alk lk# lks ks# lke ked ed#

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]

(25)

ŷ3 =
[ #wa wal alk lk# lks ks# lke ked ed#

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
]

(26)

ŷ4 =
[ #wa wal alk lk# lks ks# lke ked ed#

0.0 0.0 0.0 −1.0 1.0 0.0 1.0 0.0 0.0
]

(27)

ŷ5 =
[ #wa wal alk lk# lks ks# lke ked ed#

0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0
]

(28)

ŷ6 =
[ #wa wal alk lk# lks ks# lke ked ed#

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
]

(29)
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Note that at position 4 and 5 (27, 28), there are two candidate trigrams so that
paths can fork, potentially leading to multiple word forms.

Finally, after gathering all the candidate trigrams at different positions, we
then construct the paths according to the adjacency matrix (cf. 12). In to-
tal, two paths can be found, giving us the candidate forms walks and walked.
We then follow the same evaluation procedure described in Section 2.4, (i.e.,
synthesis-by-analysis) to select the best form. The algorithm of learn paths is
summarized in Figure 6, and the pseudo-code is provided in 1.

Figure 6: Graphical illustration of the procedure conducted in learn paths for
the word walk. The lower part of the figure presents all possible paths, and the
one selected by the model is marked in red.

ĉ

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

M1 M2 M3 M4 M5 M6

#wa wal alk lke ked ed

lks ks#

3.3.2 The build paths algorithm

Like learn paths, build paths finds paths based on positional trigrams. How-
ever, the positional information is taken into account to a lesser extent in
build paths. This is because instead of learning to predict positional trigrams
(as done via the Mt matrices in learn paths), the candidate trigrams consid-
ered in build paths are gathered from a shortlist of k nearest form neighbors.
Positional information is therefore implied in the candidate trigrams, and path-
finding can quickly tune into the existing forms of the neighbors. Although
hardly any novel paths will be found in this way, it however provides a method
to evaluate model performances more efficiently.

To illustrate, again we take the past tense and singular form (walked).
We first select the form neighbors of this word by correlating its predicted form
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Algorithm 1: Pesudo-code for learn paths algorithms.

input : dataset, C, Ĉ, A and threshold
output: A list of all candidate paths
paths working, paths working tmp, paths completed;

/* in order to save memery, Yt, Mt and Ŷt are initialized

and dumped at each timestep */

/* initialize paths in timestep 1 */

make Y1 from dataset ;
learn M1 from C and Y1;

predict Ŷ1 form Ĉ and M1 ;
for i← 1 to max data do

collect cues for all cues support > threshold;
for c ∈ cues do

if c has start boundary then
if c also has end boundary then add c→ paths completed[i];
else add c→ paths working[i];

end

end

end
/* construct paths from timestep 2 to the end */

for t← 2 to max timestep do
make Yt from dataset ;
learn Mt from C and Yt;

predict Ŷt form Ĉ and M1 ;
for i← 1 to max data do

collect cues for all cues support > threshold;
while paths working is not empty do

path← dequeue(paths working) ;
for c ∈ cues do

if c is attachable to path then // look up in A
attach c→ path ;
if c has end boundary then add
path→ paths completed[i];
else add path→ paths working tmp[i];

end

end

end
move paths working tmp→ paths working ;

end

end

17



vector ĉ with all the gold standard form vectors in the dataset (C). As shown
in Table 4, when the number of nearest neighbors is set to 3 (k = 3), we identify
three form neighbors (two forms are identical) for ĉ, i.e., walks and walked.

Table 4: The correlations of ĉ with the form vectors of all the other words in
the dataset. The selected form neighbors are marked in red.

cwalk cwalks cwalkedpast
cwalkedpart

ĉ -0.40 0.40 0.50 0.50

There are in total eight unique trigrams in the two form neighbors, which are
#wa, wal, alk, lks, ks#, lke, ked, and ed#. All eight trigrams are then considered
at each position, and the algorithm again looks for all possible paths. Similar to
the learn paths algorithm presented in the previous section, here build paths

also finds two paths, giving us the candidate forms walks and walked. Follow-
ing the same selection procedure (i.e., synthesis-by-analysis), the model selects
walked as the predicted form. Figure 7 summarizes how build paths finds the
paths, and the pseudo-code is provided in 2.

For comparison, we run the three path-find algorithms on a French dataset
(up to 12000 words) on a personal computer and the results are presented in
Table 9. As can be seen, learn paths and build paths by far outperform the
graph-based algorithm in terms of computation time, with the same accuracy
level retained.

Table 5: Processing time of the three path-finding algorithms applied to a French
dataset with up to 12000 words. The tests were run on a mid-2017 MacBook
Pro with 2.9 GHz Quad-Core Intel Core i7 processor. Time and accuracy are
measured with default threshold (0.1). The model does better with a lower
threshold but takes more time to process.

Algorithm Time (minutes) Accuracy
graph-based 255.64 0.992
learn paths 7.01 0.977
build paths 4.90 0.999

4 Other functionalities in JudiLing

4.1 cross validation

To test our model’s productivity, we also designed functions for conducting
cross-validation. In this section we introduce two cases of cross-validation, again
with our toy example. Depending on the nature of the validation dataset,
different functions and parameter settings are required. In one situation, if
the training and validation datasets are carefully separated so that no novel
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Algorithm 2: Pesudo-code for build paths algorithms.

input : dataset, C, Ĉ, A and k
output: A list of all candidate paths
paths working, paths working tmp, paths completed;
collect cues within k nearest form neighbors ;
/* initialize paths in timestep 1 */

for i← 1 to max data do
for c ∈ cues[i] do

if c has start boundary then
if c also has end boundary then add c→ paths completed[i];
else add c→ paths working[i];

end

end

end
/* construct paths from timestep 2 to the end */

for t← 2 to max timestep do
for i← 1 to max data do

while paths working is not empty do
path← dequeue(paths working) ;
for c ∈ cues[i] do

if c is attachable to path then // look up in A
attach c→ path ;
if c has end boundary then add
path→ paths completed[i];
else add path→ paths working tmp[i];

end

end

end
move paths working tmp→ paths working ;

end

end
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Figure 7: Graphical illustration of the procedure conducted in build paths for
the word walk. The lower part of the figure presents all possible paths, and the
one selected by the model is marked in red.
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cues or novel semantic features are present in the validation dataset, cross-
validation can be straightforwardly conducted with some modification of the
basic code. On the other hand, if the validation dataset contains novel cues or
semantic features, some further measures will be required. In what follows, we
will explain the methodological procedures, and detailed code will be given in
Section 5 (worked examples 5.2 and 5.3).

Previously in section 2.1, our toy lexicon included four words, walk, walks,
walked (past) and walked (participle). Now we add four new words, which are
talk, talks, talked (past) and talked (participle). We also add one lexome for talk
(see (30)). To do cross-validation, we will first need to divide the words into a
training and a validation dataset. For the convenience of illustration we include
five words in the training data: walks, walked (past), walked (participle), talked
(past) and talked (participle) ( Table 6). In the first situation, the validation
data contains the word talks. As shown in the matrices of Ctrain1 and Cval1,
all letter trigrams of talks are already present in the letter trigram set of the
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training data.

L =



S1 S2 S3 S4 S5 S6

WALK −1.52 −0.69 0.05 −0.31 1.60 0.23
PRESENT −0.92 −0.86 1.30 0.01 0.22 −0.58

PAST −0.69 0.98 2.94 −0.06 1.10 2.10
SINGULAR −0.01 0.69 −0.26 −0.56 −0.89 −1.09
PARTICIPLE −1.37 −0.98 0.81 0.01 0.56 0.31

TALK 2.15 −0.77 0.91 0.59 0.81 1.53

 (30)

Table 6: Training and validation data.

Training data
Validation data 1
no unseen cues

Validation data 2
unseen cues

walks, walkedpast, walkedpart

talkedpast, talkedpart
talks talk

Ctrain1 =



#wa wal alk lks ks# lke ked ed# #ta tal

walks 1 1 1 1 1 0 0 0 0 0
walkedpast 1 1 1 0 0 1 1 1 0 0
walkedpart 1 1 1 0 0 1 1 1 0 0
talkedpast 0 0 1 0 0 1 1 1 1 1
talkedpart 0 0 1 0 0 1 1 1 1 1



Cval1 =
[ #wa wal alk lks ks# lke ked ed# #ta tal

talks 0 0 1 1 1 0 0 0 1 1
]

In the second case, the word talk is held out for the validatation data. Dif-
ferent from talks, talk has one novel letter trigram that is absent in the training
data, which is lk#. Given that it is impossible for the model to predict the form
of this word correctly without this trigram, when constructing the C matrix, we
reserve a place-holder for this novel cue. In Ctrain2, the novel cue lk# receives
all zeros, as no words in the training data have this cue. Now with the addition
of this novel cue, the form of talk can then be properly represented (Cval2).
As will become clearer later, this step is crucial for the model to construct the
form.

Ctrain2 =



#wa wal alk lk# lks ks# lke ked ed# #ta tal

walks 1 1 1 0 1 1 0 0 0 0 0
walkedpast 1 1 1 0 0 0 1 1 1 0 0
walkedpart 1 1 1 0 0 0 1 1 1 0 0
talkedpast 0 0 1 0 0 0 1 1 1 1 1
talkedpart 0 0 1 0 0 0 1 1 1 1 1


21



Cval2 =
[ #wa wal alk lk# lks ks# lke ked ed# #ta tal

talk 0 0 1 1 0 0 0 0 0 1 1
]

The procedure of cross-validation goes as follows. For comprehension, we
first obtain the network F with the cue and semantic matrices of the training
data, following the formulae given by equations (31) and (32). Next by multi-
plying the cue matrix of the validation data with F , we can obtain the predicted
semantic matrix for the validation words.

CtrainF = Strain, (31)

CvalF = Ŝval. (32)

Since there is only one word for each evaluation, the comprehension evaluation
is not necessary here. However, we can still take the correlations between two
validation words talks and talk which are 1 and 0.91.

For production, we obtain the predicted form matrix for the validation words
with equations (33) and (34).

StrainG = Ctrain, (33)

SvalG = Ĉval. (34)

For the first validation data, only (and all) the trigams of talks receive high
support from its semantics.

ĉtalks =
[ #wa wal alk lks ks# lke ked ed# #ta tal

−0.0 −0.0 1.0 0.0 1.0 1.0 −0.0 −0.0 −0.0 1.0 1.0
]

It is therefore is easy for the path-finding algorithm to derive the correct path,
hence to predict the form correctly. For the second validation with the novel
cue, however, the crucial target trigam lk# of talk does not receive any semantic
support due to the lack of training, as can be seen from its predicted vector
shown below:

ĉtalk =
[ #wa wal alk lk# lks ks# lke ked ed# #ta tal

−0.43 −0.43 0.61 0.0 0.53 0.53 0.08 0.08 0.08 1.04 1.04
]
.

If we go on to run the path-finding algorithm, the correct path can never be
formed because the trigram lk# will be excluded by the thresholding mechanism
(cf. Section 3.3.1). We therefore introduce a second thresholding mechanism,
which is referred to as the “tolerance” mode. The “tolerance” mode allows a
pre-defined number of cues with low supports into the path-finding process. In
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this way, these cues will still be available for path construction. By setting the
tolerance threshold to a very small value (e.g., -1), the algorithm now needs
to consider more trigram cues. That is, in addition to the cues that receive
supports higher than the general threshold, cues whose supports are higher than
the tolerance threshold will be taken into account as well. In our example, these
“wildcard” trigram cues are lk#, lke, ked and ed#. With these cues together,
the algorithm can now construct to candidate paths: talk and talks. As a final
step, the “synthesis-by-analysis” (cf. Section 2.4) ultimately picks talk to be the
model’s prediction (Table 7).

Table 7: “Synthesis-by-analysis” for word talk.

stalk selected correct
ŝtalk 0.91 3 3

ŝtalks 0.86 7 7

4.2 incremental learning

The matrix solution as described thus far provides an efficient way to estimate
the networks. It, however, has some limitations. The first limitation is that
even with Cholesky Decomposition, it is still computationally costly to calcu-
late the transformation matrix when the dataset is really big. For example, it
took about 13 minutes to compute the comprehension mapping F for a dataset
with 104 thousands Finnish nouns forms. This creates difficulties for data ex-
ploration and analyses. Furthermore, as the matrix estimates the endstate of
learning, a theoretical state where any further learning only results in negligible
weight changes, we miss out on the detailed information for the learning tra-
jectory. An analogy with human language learning is that we can only look at
adults’ linguistic system, being unable to know how children acquire languages.
To overcome these limitations, in the JudiLing package we also implemented
incremental learning by using the Widrow-Hoff learning rule, the pseudo-code
of which is provided below.

With incremental learning, now we can trace weight changes in the network
across the time course. By way of example, using the toy example described in
Section 4.1, we presented 1000 learning events (with each word form appearing
roughly the same number of times) to the model, with learning rate set to 0.001.
During training, we traced the changes of weights between the cues (trigams)
and the outcomes (semantic dimensions). The development of weights between
all trigrams to the first semantic dimension (S1) is shown in Figure 8. As can be
seen, for some cues (e.g., #wa and wal), the weights connected to S1 gradually
increase. For other cues (e.g., #ta and tal), by contrast, the weights decrease.
Notably, after the 500th training epoch, the trajectory curves of all weights
asymptote, and all weight changes are minimum. In fact, if we train the model
enough epochs (over 200,000), the weights are almost identical to the values
obtained by using the matrix solution.
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Algorithm 3: Pseudo-code for Widrow-Hoff learning rules imple-
mented in JudiLing.

input : X, Y , init weights and eta
output: The transformation weight.
weights← init weights;
for x, y ← zip(X,Y ) do

preds← x ∗ init weights ;
obsv ← y − preds ;
updates← eta ∗ (xt ∗ obsv) ;
weights← weights + updates ;

end

Figure 8: The development of weights between all trigram cues and the first
semantic dimension (S1) over time.

5 Worked examples

In this section, we present three worked examples: Latin, Estonian and French.
The Latin and Estonian datasets have been previously studied, and the model-
ing results using WpmWithLdl are presented in Baayen et al. (2018a) and Chuang
et al. (2020b). The French dataset was constructed by Modeling French Verbs
with Discriminative Learning Bachelor Thesis submitted by Marei Beukman,
Tuebingen, 2020, where preliminary modeling results with JudiLing were re-
ported as well.
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In what follows, we are going to demonstrate how to use the JudiLing pack-
age with these three datasets. All modeling was run on a server with Intel(R)
Xeon(R) CPU E5-4620 v4 @ 2.10GHz of 20 cores and 1,000GB memroy. De-
tailed code for each dataset is given in the following sections. As an overview,
Table 8 and 9 present a comparison of comprehension and production accura-
cies obtained with WpmWithLdl and JudiLing. As can be seen, the accuracies
are comparable between the two packages. With respect to computing time,
the computation time is substantially reduced with JudiLing (Table 9). The
computation time of comprehension model is also reduced significantly, but
since comprehension processing is already fast using WpmWithLdl, speed gain
from comprehension side is less noticeable. Moreover, specifically for the vali-
dation data (Estonian), the learn paths result is even better than the result
obtained with the igraph algorithm provided in WpmWithLdl. It is noteworthy
that buile path does not work well for the validation dataset. This is because
build path depends heavily on the form neighbors of the target words. As the
predicted form vector for the target word in the validation data is usually not
close to the targeted form vector, the form neighbors obtained based on the
suboptimal predicted form vector are therefore also not accurate. This then
leads to failure of finding the correct path for the targeted form.

In the following examples, the modeling steps are similar: 1) make cue ma-
trix or matrices; 2) make semantic matrix or matirces; 3) solve transformation
matrix F; 4) evaluate comprehension model; 5) solve transformation matrix G;
6) run through path finding algorithms; 7) evaluate production model. All three
examples build semantic matrices with simulated distributional semantic vec-
tors as we implemented in WpmWithLdl), but it is also acceptable by JudiLing

if semantic matrix is already made by other sources.
With the Estonian and French datasets, we illustrate how to do cross-

validation (thus in both cases the data is split into training and validation data).
For the former, the splitting is carefully done, so that no novel trigram cues or
semantic features are present in the validation data. For the latter, word forms
are randomly assigned to the training and validation data. We will show how
to conduct cross-validation with these two different types of validation data.

Table 8: Comprehension accuracy for Latin, Estonian and French datasets.

Datasets WpmWithLdl JudiLing
Latin 1.000 1.000
Estoniantrain 0.992 0.992
Estonianval 0.975 0.983
Frenchtrain N/A 0.997
Frenchval N/A 0.950
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Table 9: Processing time and production accuracy for Latin, Estonian and
French datasets.

WpmWithLdl learn paths build paths

Datasets Time Acc Time Acc Time Acc
Latin 14.8 s 0.997 0.7 s 0.998 0.2 s 0.997
Estoniantrain 4.6 m 0.916 43.1 s 0.988 5.6 s 0.975
Estonianval > 1 d 0.695 48.2 s 0.899 8.7 s 0.460
Frenchtrain N/A N/A 82.4 m 0.982 25.3 m 0.998
Frenchval N/A N/A 20.6 h 0.669 27.5 m 0.082

5.1 Latin

The Latin dataset contains 8 lexemes with 5 different inflectional features: Per-
son, Number, Tense, Voice and Mood, resulting in total of 672 data records.
Table 10 shows different forms of lexeme “vocare” in different Person and Num-
ber features.

Table 10: 6 forms of Lexeme “vocare” in different Person and Number

Word Lexeme Person Number Tense Voice Mood
vocoo vocare p1 sg present active ind
vocaas vocare p2 sg present active ind
vocat vocare p3 sg present active ind
vocaamus vocare p1 pl present active ind
vocaatis vocare p2 pl present active ind
vocant vocare p3 pl present active ind

We assume that the dataset is already in a subfolder data under the project
directory. The first step is to load CSV file into a dataframe.

using JudiLing # our package

using CSV # read csv files into dataframes

# load latin file

latin = CSV.DataFrame!(CSV.File(joinpath(

@__DIR__, "data", "latin.csv")))

Then we are going to make cue matrix and semantic matrix for the dataset.
In the example, we choose to use letter trigrams as cues, and their semantic
vectors are simulated vectors composed by 6 semantic features: Lexeme, Person,
Number, Tense, Voice and Mood. Also, we set the dimension of semantic vectors
equal to the total number of cues.

# create C matrixes for Latin

cue_obj = JudiLing.make_cue_matrix(

26



latin,

grams=3,

target_col=:Word,

tokenized=false,

keep_sep=false

)

# retrieve dim of C

# we set the S matrixes as the same dimensions

n_features = size(cue_obj.C, 2)

# create S matrix for Latin

S = JudiLing.make_S_matrix(

latin,

["Lexeme"],

["Person","Number","Tense","Voice","Mood"],

ncol=n_features,

add_noise=true)

The next step is to learn the transform mapping F and G. Currently, we
use Cholesky Decomposition to invert the matrix and calculate F and G, as
discussed in section 2.2.

# we use cholesky function to calculate mapping G from S to C

G = JudiLing.make_transform_matrix(S, cue_obj.C)

# we calculate F as we did for G

F = JudiLing.make_transform_matrix(cue_obj.C, S)

After obtaining F , the comprehension model is complete. We can evaluate
the accuracy with eval SC function. Note that as the Latin dataset contains
homophones, here we have options of whether recognizing the meaning of one’s
homophonic counterpart should be considered correct or incorrect.

Shat = cue_obj.C * F

@show JudiLing.eval_SC(Shat, S) # 0.991

@show JudiLing.eval_SC(Shat, S, latin, :Word) # 1.0

If we count homophones as correct predictions, then the accuracy of the com-
prehension model is 100%.

Let’s now turn to the production model. In order to glue cues together,
we need an adjacency matrix which specifies all the possible continuations of
a given cue. There are several approaches making adjacency matrix. Here
we use the default adjacency matrix created along with the cue matrix by the
make cue matrix function, in which only attested transitions are allowed. An-
other way of constructing adjacency matrices is introduced in the Section 5.2.
For the path finding part, we use both learn path and build path. Here we
have the option to request the function to return information about the gold
path, i.e., the correct path of the targeted form. The code is presented below.
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Chat = S * G

# here we only use a adjacency matrix as we got it

# from the training dataset

A = cue_obj.A

# we calculate how many timestep we need for

# learn_paths and build_paths function

max_t = JudiLing.cal_max_timestep(latin, :Word)

# we apply the learn_paths and build_paths functions

res_learn, gpi_learn = JudiLing.learn_paths(

latin,

latin,

cue_obj.C,

S,

F,

Chat,

A,

cue_obj.i2f,

cue_obj.f2i,

check_gold_path=true,

gold_ind=cue_obj.gold_ind,

Shat=Shat,

max_t=max_t,

max_can=10,

grams=3,

threshold=0.1,

tokenized=false,

keep_sep=false,

target_col=:Word,

verbose=true)

res_build = JudiLing.build_paths(

latin,

cue_obj.C,

S,

F,

Chat,

A,

cue_obj.i2f,

cue_obj.gold_ind,

max_t=max_t,

n_neighbors=3,

verbose=true

)
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acc_learn = JudiLing.eval_acc(

res_learn,

cue_obj.gold_ind,

verbose=false

)

acc_build = JudiLing.eval_acc(

res_build,

cue_obj.gold_ind,

verbose=false

)

println("Acc for learn: $acc_learn") # 0.998

println("Acc for build: $acc_build") # 0.997

The accuracies for learn path and build path are high. The learn path result
contains one error, and that of build path contains two errors. Further analyses
on the errors show that the correct paths are found by both learn paths and
build paths, but the errors turn out to have slightly higher correlations with the
gold standard semantic vector than the correct paths, according to “synthesis-
by-analysis” (Table 12 and 13). Since both path-finding algorithms use the
same comprehension network F , the correlation values of both algorithms are
therefore identical.

Table 11: Errors of two JudiLing path finding algorithms and WpmWithLdl.

Prediction Gold Label

WpmWithLdl
curriaaris curraaris
curreereris currereeris

learn path sapieebar sapiar

build path
sapieebar sapiar
sapieebam sapiam

Table 12: Candidate paths found by learn path and their “synthesis-by-
analysis” support.

Golden Label Prediction Support

sapiar

sapieebar 0.853
sapiar 0.850
sapieemur 0.826
sapieeris 0.809
sapientur 0.701
sapiirer 0.611
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Table 13: Candidate paths found by build path and their “synthesis-by-
analysis” support.

Golden Label Prediction Support

sapiar
sapieebar 0.853
sapiar 0.850

sapiam
sapieebam 0.867
sapiam 0.866

Finally we can save both the results into CSV files for further analysis. This
can be done for both the general results and the gold path results. The former
contains detailed information about the candidate paths of a given word form,
including “synthesis-by-analysis” support, accuracy, and whether prediction is
a novel form. A screenshot of this output is presented in Figure 9. On the other
hand, the latter tells us not only the “synthesis-by-analysis” support of the gold
path, but also the semantic support that each trigram obtains at time t (Figure
10).

JudiLing.write2csv(

res_learn,

latin,

cue_obj,

cue_obj,

"latin_learn_res.csv",

grams=3,

tokenized=false,

sep_token=nothing,

start_end_token="#",

output_sep_token="",

path_sep_token=":",

target_col=:Word,

root_dir=@__DIR__,

output_dir="latin_out"

)

JudiLing.write2csv(

gpi_learn,

"latin_learn_gpi.csv",

root_dir=@__DIR__,

output_dir="latin_out"

)
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Figure 9: A screenshot of results produced by JudiLing for Latin example.

5.2 Estonian

The Estonian dataset contains over 5,000 words nouns with different cases and
numbers, as can be seen in Table 14. Unlike the Latin example, where we
trained and evaluated the entire dataset, for this dataset we are going to train
the model with a portion of data (5154), and evaluate it with the rest of data
(1288). The data was carefully split into the training and validation datasets, so
that no novel cues and semantic features are present in the validation dataset.

Table 14: 4 Estonian word forms with their cases and numbers specified.

Word Lexeme Case Number
ümbrikul ümbrik ad sg
rüüdele rüü all pl
jõesse jõgi ill sg
koer koer nom sg

The first step is to load the datasets, but this time we need to load both the
training and validation datasets.

using JudiLing # our package

using CSV # read csv files into dataframes

# load estonian files
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Figure 10: A screenshot of gold path information produced by JudiLing for
Latin example.

estonian_train = CSV.DataFrame!(CSV.File(

joinpath(@__DIR__, "data", "estonian_train.csv")))

estonian_val = CSV.DataFrame!(CSV.File(

joinpath(@__DIR__, "data", "estonian_val.csv")))

Next we construct the cue matrices and semantic matrices, for both training
and validation datasets.

cue_obj_train, cue_obj_val = JudiLing.make_cue_matrix(

estonian_train,

estonian_val,

grams=3,

target_col=:Word,

tokenized=false,

keep_sep=false

)

# retrieve dim of C

# we set the S matrixes as the same dimensions

n_features = size(cue_obj_train.C, 2)
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S_train, S_val = JudiLing.make_S_matrix(

estonian_train,

estonian_val,

["Lexeme"],

["Case","Number"],

ncol=n_features,

add_noise=true)

The transformation matrix for comprehension is derived based on the cue and
semantic matrices of the training datasets. We then obtain the predicted se-
mantic matrices for both the training and validation data, and evaluate them
accordingly.

F_train = JudiLing.make_transform_matrix(cue_obj_train.C, S_train)

Shat_train = cue_obj_train.C * F_train

Shat_val = cue_obj_val.C * F_train

# count homophones as incorrect

@show JudiLing.eval_SC(Shat_train, S_train) # 0.975

@show JudiLing.eval_SC(Shat_val, S_val) # 0.976

# count homophones as correct

@show JudiLing.eval_SC(

Shat_train, S_train, estonian_train, :Word) # 0.992

@show JudiLing.eval_SC(

Shat_val, S_val, estonian_val, :Word) # 983

As we can see, the accuracies of both training and validation data are very high
especially when homophones are treated as correct predictions.

With respect to production, again we first obtain the predicted cue matrices
for both the training and validation datatsets. We then run the path-finding
algorithms, learn paths and build paths.

G_train = JudiLing.make_transform_matrix(S_train, cue_obj_train.C)

Chat_train = S_train * G_train

Chat_val = S_val * G_train

# here we only use a adjacency matrix as we got it

# from the training dataset

A_train = cue_obj_train.A

# we calculate how many timestep we need for

# both training and validation data

max_t = JudiLing.cal_max_timestep(

estonian_train, estonian_val, :Word)
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# we apply the learn_paths and build_paths functions

res_learn_train, gpi_learn_train = JudiLing.learn_paths(

estonian_train,

estonian_train,

cue_obj_train.C,

S_train,

F_train,

Chat_train,

A_train,

cue_obj_train.i2f,

cue_obj_train.f2i,

check_gold_path=true,

gold_ind=cue_obj_train.gold_ind,

Shat_val=Shat_train,

max_t=max_t,

max_can=10,

grams=3,

threshold=0.05,

tokenized=false,

keep_sep=false,

target_col=:Word,

verbose=true)

acc_learn_train = JudiLing.eval_acc(

res_learn_train,

cue_obj_train.gold_ind,

verbose=false

)

res_learn_val, gpi_learn_val = JudiLing.learn_paths(

estonian_train,

estonian_val,

cue_obj_train.C,

S_val,

F_train,

Chat_val,

A_train,

cue_obj_train.i2f,

cue_obj_train.f2i,

check_gold_path=true,

gold_ind=cue_obj_val.gold_ind,

Shat_val=Shat_val,

max_t=max_t,

max_can=10,

grams=3,

threshold=0.05,
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is_tolerant=true,

tolerance=-0.1,

max_tolerance=3,

tokenized=false,

keep_sep=false,

target_col=:Word,

verbose=true)

acc_learn_val = JudiLing.eval_acc(

res_learn_val,

cue_obj_val.gold_ind,

verbose=false

)

res_build_train = JudiLing.build_paths(

estonian_train,

cue_obj_train.C,

S_train,

F_train,

Chat_train,

A_train,

cue_obj_train.i2f,

cue_obj_train.gold_ind,

max_t=max_t,

n_neighbors=3,

verbose=true

)

acc_build_train = JudiLing.eval_acc(

res_build_train,

cue_obj_train.gold_ind,

verbose=false

)

res_build_val = JudiLing.build_paths(

estonian_val,

cue_obj_train.C,

S_val,

F_train,

Chat_val,

A_train,

cue_obj_train.i2f,

cue_obj_train.gold_ind,

max_t=max_t,

n_neighbors=20,

verbose=true
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)

acc_build_val = JudiLing.eval_acc(

res_build_val,

cue_obj_val.gold_ind,

verbose=false

)

println("Acc for learn train: $acc_learn_train") # 0.988

println("Acc for learn val: $acc_learn_val") # 0.801

println("Acc for build train: $acc_build_train") # 0.975

println("Acc for build val: $acc_build_val") # 0.402

As expected, the accuracies of the training data are higher than those of the
validation data. The cross-validation accuracy is increased from 69.5% to 80.1%
compared with WpmWithLdl (Chuang et al., 2020b). In fact, the accuraies of the
validation data also hinges on how the adjacency matrix is constructed. Here we
used the default setting, in which only the attested connections are allowed. To
increase the cross-validation accuracy further, we can also build the adjacency
matrix in such a way that we want the model to be prepared for all possible
connections. To do so, we re-construct the “full” adjacency matrix with the
following code:

A = JudiLing.make_combined_adjacency_matrix(

estonian_train,

estonian_val,

grams=3,

target_col=:Word,

tokenized=false,

keep_sep=false

)

With the full adjacency matrix, the accuracy of learn paths increases by al-
most 10% (Table 15), although that of build paths hardly changes. A further
examination of the errors shows that for learn paths, among all the 256 er-
rors, 83 (32.4%) of them have the targeted forms in the candidate lists. As
to build paths, the correct paths are in the candidate lists for only 2.3% of
the errors. As explained previously, the success of build paths depends on the
“seen” form neighbors (i.e., word forms in the training data). That is, if a given
trigram cue is not found in any of the form neighbors, there is no way that the
algorithm can find the correct path, even with the full adjacency matrix. The
productivity of build paths is therefore much more restricted.

5.3 French

The French dataset contains 21,306 short phrases, such as j’abandonne. Each
phrase is specified with the following semantic features: Lexeme, Tense, Aspect,
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Table 15: Results of learn paths (lp), build paths (bp), learn paths with full
adjacency matrix (lp full) and build paths with full adjacency matrix (bp full),
in Estonian unseen data and trained data.

lp bp lp full bp full
trained data 0.988 0.975 0.988 0.975
unseen data 0.801 0.402 0.899 0.406

Person, Number, Gender, Class and Mood. For each form, we also have its
phone representation, with syllable boundary indicated by “-”. An example
of the coding of one short phrase is presented in Table 16. The dataset also
contains more complex phrases with auxiliary verbs such as “qu’elles eussent
abandonné” and “que tu eusses abandonné”.

Table 16: Example of “j’abandonne” in French dataset

Orthography j’abandonne
Cues Syllables Za-b@-dOn

Semantics

Lexeme abandonner
Tense present
Aspect n/a
Person p1
Number singular
Gender common
Class action
Mood indicative

For modeling set-up, we first import all necessary packages and load the
dataset into a dataframe.

using JudiLing # our package

using CSV # read csv files into dataframes

using Random # shuffle the dataset

# load french file

french = CSV.DataFrame!(CSV.File(joinpath(

@__DIR__, "data", "french.csv")))

Unlike the Estonian example, where we have the training and validation data
separated, this time we randomly split French dataset into 20,306 training data
and 1,000 validation data.

# randomly reorder the data

rng = MersenneTwister(314)

french = french[shuffle(rng, 1:size(french, 1)),:]
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# split the dataset

tv = 1000

french_train = french[1:end-tv,:]

french_val = french[end-tv+1:end,:]

As the dataset is randomly split into the training and validation datasets, it is
expected that there are novel cues (here we use syllables bigrams) and semantic
features in the validation dataset. To address this issue, we reserve placeholders
for these unseen cues and semantic features in the cue and semantic matrices of
the training data. This is done with the functions make combined cue matrix

and make combined S matrix.

# create cue matrices for

# both training and validation datasets

# while holding unseen cues as 0

cue_obj_train, cue_obj_val = JudiLing.make_combined_cue_matrix(

french_train,

french_val,

grams=2,

target_col=:Syllables,

tokenized=true,

sep_token="-",

keep_sep=true

)

# retrieve dim of C

# we set the S matrixes as the same dimensions

n_features = size(cue_obj_train.C, 2)

# create semantice matrices for

# both training and validation datasets

# also make lexome matrix for unseen semantice features

S_train, S_val = JudiLing.make_combined_S_matrix(

french_train,

french_val,

["Lexeme"],

["Person", "Number", "Gender", "Tense", "Aspect", "Class", "Mood"],

ncol=n_features,

add_noise=true)

The code for training and evaluating the comprehension network is presented
below.

# we use cholesky function to calculate mapping F from C to S

F_train = JudiLing.make_transform_matrix(cue_obj_train.C, S_train)

# the model produces predictions for
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# both training and validation datasets

Shat_train = cue_obj_train.C * F_train

Shat_val = cue_obj_val.C * F_train

# evaluation taking homophones as incorrect

@show JudiLing.eval_SC(Shat_train, S_train) # 0.941

@show JudiLing.eval_SC(Shat_val, S_val) # 0.913

# evaluation taking homophones as correct

@show JudiLing.eval_SC(Shat_train, S_train, french_train,

:Syllables) # 0.997

@show JudiLing.eval_SC(Shat_val, S_val, french_val,

:Syllables) # 0.929

For production, again we start with creating the predicted form vectors.

# we use cholesky function to calculate mapping G from S to C

G_train = JudiLing.make_transform_matrix(S_train, cue_obj_train.C)

# we calculate Chat matrixes by multiplying S and G

Chat_train = S_train * G_train

Chat_val = S_val * G_train

For the adjacency matrix, here we use the one with attested connections. This
is because for such a big dataset, finding paths with all possible continuations
require considerable computing resources.

# here we have the adjacency matrix for

A_train = cue_obj_train.A

# we calculate how many timestep we need

max_t = JudiLing.cal_max_timestep(

french_train, french_val, :Syllables)

For learn paths, we set the threshold to 0.1 for the training data. For the val-
idation data, we maintain the first threshold to 0.1, but turn on the tolerance
mode with second threshold of -0.1 and to allow maximum 3 weak connections.

# learn_path for training data

res_learn_train = JudiLing.learn_paths(

french_train,

french_train,

cue_obj_train.C,

S_train,

F_train,

Chat_train,

A_train,
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cue_obj_train.i2f,

cue_obj_train.f2i,

max_t=max_t,

max_can=10,

grams=3,

threshold=0.1,

tokenized=true,

sep_token="-",

keep_sep=true,

target_col=:Syllables,

verbose=true)

# learn_path for validation data

res_learn_val = JudiLing.learn_paths(

french_train,

french_val,

cue_obj_train.C,

S_val,

F_train,

Chat_val,

A_train,

cue_obj_train.i2f,

cue_obj_train.f2i,

max_t=max_t,

max_can=10,

grams=2,

threshold=0.1,

is_tolerant=true,

tolerance=-0.1,

max_tolerance=3,

tokenized=true,

sep_token="-",

keep_sep=true,

target_col=:Syllables,

verbose=true)

# build_path for training data

res_build_train = JudiLing.build_paths(

french_train,

cue_obj_train.C,

S_train,

F_train,

Chat_train,

A_train,

cue_obj_train.i2f,

cue_obj_train.gold_ind,
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max_t=max_t,

n_neighbors=3,

verbose=true

)

# build_path for validation data

res_build_val = JudiLing.build_paths(

french_val,

cue_obj_train.C,

S_val,

F_train,

Chat_val,

A_train,

cue_obj_train.i2f,

cue_obj_train.gold_ind,

max_t=max_t,

n_neighbors=20,

verbose=true

)

# learn_paths for training data

@show acc_learn_train = JudiLing.eval_acc(

res_learn_train,

cue_obj_train.gold_ind,

verbose=false

) # 0.982

# learn_paths for validation data

@show acc_learn_val = JudiLing.eval_acc(

res_learn_val,

cue_obj_val.gold_ind,

verbose=false

) # 0.669

# build_paths for training data

@show acc_build_train = JudiLing.eval_acc(

res_build_train,

cue_obj_train.gold_ind,

verbose=false

) # 0.998

# buil_paths for validation data

@show acc_build_val = JudiLing.eval_acc(

res_build_val,

cue_obj_val.gold_ind,

verbose=false
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Table 17: Accuracies of different categories in validation data performed by
learn paths.

Total Correct Accuracy

randomly split
with unseen cues 108 74 0.685
without unseen cues 892 595 0.667
total 1000 669 0.669

carefully split total 1000 670 0.670

) # 0.082

We only evaluate the model with 1000 randomly selected data because con-
ducting cross-validation with reasonable accuracy is still time-consuming. The
production accuracies of both algorithms for the training data are high, but
as expected for this complex dataset, build paths is useless. By contrast, the
overall accuracy of learn paths is at 66.9%. If we further divide the validation
data into word forms with and without unseen cues, as presented in the upper
part of Table 17, we can see that the accuracies are roughly the same. This
suggests that with proper model settings, the path-finding algorithms are not
really disturbed by unseen cues. This is further confirmed by a further test,
where we carefully selected the validation data so that it does not contain any
novel cues. Nevertheless, we obtained a similary accuracy, 67% (lower part of
Table 17).

Finally we output the results by saving it as CSV files.

JudiLing.write2csv(

res_learn_train,

french_train,

cue_obj_train,

cue_obj_train,

"french_learn_res_train.csv",

grams=2,

tokenized=false,

sep_token=nothing,

start_end_token="#",

output_sep_token="",

path_sep_token=":",

target_col=:Syllables,

root_dir=@__DIR__,

output_dir="out"

)

JudiLing.write2csv(

res_learn_val,

french_val,

cue_obj_train,
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cue_obj_val,

"french_learn_res_val.csv",

grams=2,

tokenized=false,

sep_token=nothing,

start_end_token="#",

output_sep_token="",

path_sep_token=":",

target_col=:Syllables,

root_dir=@__DIR__,

output_dir="out"

)

JudiLing.write2csv(

res_build_train,

french_train,

cue_obj_train,

cue_obj_train,

"french_build_res_train.csv",

grams=3,

tokenized=true,

sep_token="-",

start_end_token="#",

output_sep_token="",

path_sep_token=":",

target_col=:Syllables,

root_dir=@__DIR__,

output_dir="out"

)

JudiLing.write2csv(

res_build_val,

french_val,

cue_obj_train,

cue_obj_val,

"french_build_res_val.csv",

grams=3,

tokenized=true,

sep_token="-",

start_end_token="#",

output_sep_token="",

path_sep_token=":",

target_col=:Syllables,

root_dir=@__DIR__,

output_dir="out"

)
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6 Conclusion

LDL is a simple two-layer bidirectional neural network model. It designed to
model both comprehension and production. Given the cue matrix C, it trans-
forms C into Ŝ by multiplying with transformation weights F , while given the
semantic matrix S, it produces the Ĉ matrix by multiplying S with G. The
second step, namely the path-finding algorithm, is required on the production
side to assemble n-gram cues in the proper order.

Baayen et al. (2018a) first implemented LDL in R (WpmWithLdl). The mod-
eling results of LDL thus far demonstrate that this simple network works well
for a number of morphologically complex languages. However, the R imple-
mentation has its limits in terms of speed and memory usage. It is difficult to
model large datasets with WpmWithLdl. We tried to model the French dataset
with WpmWithLdl after 8 hours of training, the program crashed because it ran
out of memory. Compared with R, Julia supports Linear Algebra computa-
tion natively and it provides fast and reliable computation without having to
import external libraries. There are also two new algorithms that Judiling

makes available. The two path-finding algorithms both reduce computation
time and memory required. They also do not suffer from the problem that in
large graphs, there are far too many paths, and it is also no longer necessary to
implement workarounds for dealing with words with cycles. The two path- find-
ing algorithms provide different functionalities. Learn path provides positional
learnablities at each timestep while build path further restricts the number of
candidate cues by only accepting cues from k nearest form neighbors.

Along with the substantially reduced computation time, several new features
are designed and included in the package to facilitate cross-validation. For
example, for novel connections and cues that are not attested in the training
data, one can opt to use the full adjacency matrix, or one can turn on the
tolerance mode to allow for weaker links during path construction. Finally, the
Widrow-Hoff learning rule is implemented. This incremental learning rule gives
the model the flexibility to trace the learning process, and the possibility to
evaluate huge datasets that cannot be handled well by matrix inversion.

In conclusion, because Julia optimizes numeric computation within Lin-
ear Algebra and uses memory wisely, JudiLing reduces computation time and
memory substantially specially for production model. Along with the two new
path-finding algorithms and other useful features, JudiLing brings LDL to the
next level by making it feasible to model substantially larger datasets within
reasonable time.
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