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Abstract

Here we show and deduce the T-matrix and a general multiple
scattering formulation which can be adapted to acoustics, electromag-
netism, and elasticity. For details on each specific physical medium
see the other documents.
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1 Using a T-matrix

A T-matrix denotes how one single particle scatters waves [4, 3].
For convenience and generality we denote:

un(kr) = outgoing spherical waves,

vn(kr) = regular spherical waves,
(1)

where n denotes a multi index which depends on the dimension and if the
waves are scalar or vector fields.

Any incident wave and scattered wave∗, centred at the same coordinate
axis, can be written as

uinc =
∑
n

gnvn(kr), (2)

usc =
∑
n

fnun(kr). (3)

∗For the scattered wave we need only use outgoing spherical waves when measuring the
field outside of a sphere which completely encompasses the particle.
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The T-matrix is an infinite matrix such that

fn =
∑
n′

Tnn′gn′ . (4)

Such a matrix T exists when scattering is a linear operation (elastic scatter-
ing).

We can also estimate the field inside the particle by assuming that the
field is smooth and continuous. This approximation is exact for homogeneous
spheres and cylinders, but not for a Circular cylindrical capsule.

Assume the field inside the particle can be described by a regular spherical
series:

vin =
∑
n

bnvn(kor), (5)

where ko if the particles wavenumber. Now if we assume that the total field
is continuous everywhere so that uinc + usc = vin on the boundary of the
particle. If the field was smooth enough, we could analytically extend the
field vin to a spherical boundary, with radius a, which contains the particle.
Let’s take this as an assumption and equate uinc + usc = vin for r = a. Due
to orthogonality of the angular components of the basis functions this will
result in

gnvn(kr) + fnun(kr) = bnvn(kor), for |r| = a (6)

using the T-matrix we can then write gn = T−1nmfm, which substituted above
leads to

bn =
1

vn(kor)
[vn(kr)T−1nmfm + un(kr)fn], for |r| = a. (7)

2 Multiple scattering in general

For multiple scattering in higher dimensions and for vector wave equations
we use the notation given in [5].

For a point r, outside of the circumscribed spheres of all particles, we
can write the total field u(r) as a sum of the incident wave uinc(r) and all
scattered waves in the form [6, 7, 8]

u(r) = uinc(r) + usc(r), usc(r) =
N∑
i=1

∑
n

f i
nun(kr − kri), (8)

where we assumed |r − ri| > ai for i = 1, 2, . . . N , the f i
n are coefficients we

need to determine, where again:{
un(kr) = outgoing spherical waves,

vn(kr) = regular spherical waves,
(9)
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where n denotes a multi index which depends on the dimension and if the
waves are scalar or vector fields.

In general, we can write the multiple scattering system in the form:

αi
n = gin +

N∑
j=1
j 6=i

∑
n′n′′

Un′′n(kri − krj)T j
n′′n′α

j
n′ , (10)

for i = 1, 2, . . . , N , where f i
n =

∑
n′ T i

nn′αi
n′ and Unn′ is a translation matrix

[1, 2]. Let r′ = r + d, then the translation matrices for a translation d can
be defined by the property [1]

vn(kr′) =
∑
n′

Vnn′(kd)vn′(kr), for all d

un(kr′) =
∑
n′

Vnn′(kd)un′(kr), |r| > |d|

un(kr′) =
∑
n′

Unn′(kd)vn′(kr), |r| < |d|

(11)

2.1 Turing equations into code

For easy implementation we need the functions:

ψinc 7→ gmj and particle 7→ T nm
j .

For efficient implementation we rewrite (10) as a matrix equation. Let

(αj)n = αj
n, (gj)n = gjn, (12)

(T j)nn′ = T j
nn′ , (U j`)n′n = Un′n(krj − kr`), (13)

Then ∑
`

(δj` + (δj` − 1)UT
j`T `)α` = gj, (14)

where ·T is the transpose operation. The above then leads to a block matrix
equation:

I −UT
12T 2 · · · −UT

1(N−1)TN−1 −UT
1NTN

−UT
21T 1 I −UT

23T 3 · · · −UT
2NTN

...
...

−UT
N1T 1 · · · · · · −UT

N(N−1)TN−1 I



α1

α2

...
αN

 =

g1...
gN


(15)
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