> restart, unprotect(y, T')

The Reentry-Problem
(optimal braking maneuver for an Apollo 11 type space capsule)
as a Boundary Value Problem

Literature: Stoer/Bulirsch, "Introduction to Numerical Analysis", Springer-Verlag, Berlin, Heidelberg. New York 2002

Autor: Folkmar Bornemann, 2000/02/23;

Revision Maple 8, 2003/02/02;

Revision Maple 10, 2006/02/01;

Revision Maple 2015, 2015/10/12;

English translation by Vishal Sontakke, 2016/04/20;

¥ §1. The problem statement

A. The state variables

velocity

> Vi= X!

flight-path angle

> yi= Xyt

normalized height (as a multiple of Earth's radius)
> &= x5!

B. The control variable

time-dependent control parameter used for adjusting the motion of the space capsule (trimming angle)
> u:

C. Auxiliary variables

density of air (R = Radius of Earth= 20 900 000 ft = 6370 km)

>pi=p0e PRY g =426 R=209:
aerodynamic drag coefficient
> Cpi=¢—cycos(u):c;=1.174, ¢, =0.9:

aerodynamic lift coefficient
> Cpi=cysin(u) :c;=0.6:

D. The constituent differential equations

The acceleration, which is given by the time derivative V= % v(t) of the velocity, is

SmpV' Gy gsin(y)
2 (1+¢)°
Here Sm denotes the ratio of the front surface to the mass of the capsule, g is the gravitational acceleration (in imperial

units)
> Sm= 53200, g = 0.32172e—3:

> Vi=

The time derivative I" = a4 v(t) of the flight-path angle is

dt
b SmpvC veos(y) _ geos(y)
2 R(1+8) v(1+8)>
The time derivative = = % E(t) of the normalized height is
o vsin(y) |
R

E. The boundary conditions

(a) The initial position of the capsule as it enters the Earth's atmosphere at t = 0:

velocity = 36 000 ft/sec = 11 km/s = Mach 33

> v(0) =0.36:
initial flight-path angle (in °)
> v(0) = -8.1:
initial height= 400 000 ft = 122 km
4
0) =—:
> 8(0) =

(b) Required conditions over the Pacific by the end of the braking maneuver at time t= T:

velocity = 27 000 ft/sec = 8.2 km/s = Mach 25

> Vv(T)=0.27:
the flight-path angle as the capsule should be parallel to the surface of the Earth
>vy(T)=0:
height = 250 000 ft = 76 km
2.5
T)=—":
>8(T) =

F. The objective function

The total stagnation point convective heating per unit area is given by the following integral:

T
J=| odt

0
The range of integration is from t=0, the time when the vehicle hits the 400,000 ft atmospheric level, until a time
instant T. The vehicle is to be manueuvered into an initial position favorable for the final splashdown in the pacific.
Through the freely disposable parameter u, the maneuver is to be executed in such a way that the heating J becomes
minimal.

> @ = IOVS\/F

-BRx

O=10xJ poe °* 1.1
NP

§2. Formulation as a Boundary Value Problem

The theory of optimal control shows that the problem can be regarded as a variational problem with differential
equation constraints.

This leads to the following formulation: Construct the Hamilton-function H, which consists of the integral (J) of the

kernel (®) to be minimized and the adjoint variables (Lagrange multipliers) linearly combined with the right sides of
the constituent equations: This forms the right hand side of the constituent differential equations:

H::®+X1V+K2F+XSE:

Thus, we now obtain, for each state variable, the right hand side of the differential equation by differentiating H with
respect to the corresponding adjoint variable; these are of course just the constituent differential equations as
discussed in (D)...

i)
> f:= aTl H
f,= ; Sm p()e_BRx3 X (€ = ¢y cos(u)) — flsi(jz))z @.1
3
i)
> foi= a—xz
/= ; Sm po0 o x, ¢ sin(u) + ;1 (CFSJF()Z)) - x;g(cfsfc;))z 2.2
> fri= f)i%
| f= xlstléxz) 2.3

For each of the adjoint variables we obtain the right hand side by the negative derivative of H with respect to the
corresponding state variables:

0

>f41: aile
1 -BRx cos (X gcos(x -BRx sin(x,) A
5 Z—[ESmpOe 3C3SII’I(M)+ R(l(—l-2x)3) xz(l—ij))z A, +SmpOe 3x1 (cl—czcos(u))kl— (;) > 30 24
1 3
-BRx
x?\/ poe .

0

>f5 '——aisz
X, sin(x gsin(x gcos(x,) A X, cos(x,) A
fs::__ 1 (2)+ (2)2 7u2+ (2)21_ 1 (2)3 Q.5
ROI+5) x (1+x) (1+x;) R

0

>f6:=_6x3
-BRx X, cos(x. 2gcos(x -BRx
f6:=-[—%Smp0BRe 3x1c3sin(u)— R1(1+(2))2 + (1+(2))3]Kz—[%SmpOBRe 3x§ (cl—czcos(u)) 2.6
X3 % X3
-BRx
N 2 gsin(x,) - 5xp0BRe °
1 +x) | ! B Rx
(3) 3

pOe

The optimal control is then given by (Pontryagin's Minimum principle)

> —H=0:
u

in our case, as

0
> Ugppe -= Solve(H=0, uj
ou

olve *

¢y,
U, e = arctan| — —— 2.7
1

(Caution: the innocent looking main branch of the function arctan limits the control-values to the interval . In the model the control

T
2° 2

function u(t) can be an arbitrary real number; because the value of U (t)only enters in the form of Sin(u) and cos(u). The values of U (t) in the
interval [-7, TE] produces the same result. For flight-path angle Y(0) = -8.1 this does not play any role, in contrast to the shallower flight-path

angle of the Apollo 11 withy(0) = -6.5.

What does one have to do in order to overcome this difficulty and to be able to compute for Y(0) = -6.5 as well? The CAS-Systems like Maple
should be used with mathematical expertise.)

Thus we have 6 equations with 6 conditions, which looks good but the time T is still unknown. Thus we add another

state variable using a trivial equation %T(t) = 0, wherein the time T has been transformed to the interval [0,1]. This
new state variable is then included as a factor in front of the remaining differential equations.

The variational formulation provides another associated boundary condition, namely the Transversality condition
H(t=T) =0.

§3. Programming the right hand side of the system of differential equations

After the following calculations, we will obtain the 7 differential equations of our boundary value problem:

= fCt:: [Ll - US()Ive’
c, A 1 -BRx g sin(x 1 “BRx
32],a’xlT{szpOe 3x§ (cl—czcos(u))—0(2)],dx2=T[2SmpOe 3x1c35in(u) 31
1

czklx (1+x3)2

seq(dx;= Tf;, i=1.6), dx,=0]

fet ;== | u = arctan

g cos(x. B Rx sin(x,) A -BRx X, sin(x
+ - (2)2 A, +SmpOe xl(cl—czcos(u))kl— (2) % —30x§ pOe . ydxg =T | -| - 11 (%)
x1(1+x3) R(+x3)
gsin(x gcos(x,) A x, cos(x,) A 1 -B Rx X, cos(x
+ (2)2 A, + (2)21 : ;2) 3],dx6—T —[—ESmpOBRe 3xlc3sin(u)—1—(2)2
x1(1+x3) (l+x3) R(1+x3)
3 PRy
2gcos(x2) 1 -BRx, 2gsin(x2) 5x;p0BRe
+—— | A, — | = SmpOBRe X (c —c cos(u))-l—— A, + ,dx, =0
¥, (1+x3)3 2 P 117 %2 (l+x3)3 1 Ry, 7
p0e
Let's look at the cost of evaluating the right hand side if we simple program it directly:
with(CodeGeneration):
with(codegen,optimize,makeproc,cost):
cost(fct[]);
34 functions + 113 multiplications + 79 subscripts + 25 divisions + 8 assignments + 39 additions 3.2

Considering an average of 5 flops per function call this leads to 347 flops!

Hence we do not program it right away. We try to save the intermediate values and reuse them, such as cos(x2) etc. In
this way we can save almost a factor of 3 in effort:

> fctopt:=[optimize(fct,'tryhard’)];cost(fctopt[]);

1 1 1
fetopt:= |16 =xy, t10= 1 + 116,14 = — .15 = — 139 =214 15,138 = g 15, 117 = x,, 17 = sin(t17), 137 = g 17, t18 = x,, 115 = — =, 136
t10°

1 116135

=gtl5,135=B R, 121 = t9=cos(t17),134=12119,133=p0 e ,132=118 121,131 =19 136, 130 = Sm 133, 120 = c,, t]2=7u2, t13

03 |2 = — 120 cos(u), 129 = 12130, 128 = 119 sin (u) 130, 114 =118, 127 = t14 133 135, 126

1

R’
1912 t]
27\. , 119 =cy,u=arc n(er t5),2

1 1 1
= 128,122 =p0w(t33, >) t11 ="My, dv, =T (1412915 z37), de,=T (15131 + (134 4 + 126) t18), dx, = T 17 132, dx,

138
=T (— (t26—|— [tZ] 4+ 2] t9) 12+ 18113129 — 721 tl1]1 — 30 t]4t22j,dx5= T ((-t11324+1t13138) 19— (-132t4
t18

1 1 5t18127
+13615) t1217),dx, =T ((131 139 + (—2 28135 — 15 z34j zzg) 112 — (2 Sm 2127 + 137139] t13 + tzz),dx7 =ol

16 subscripts + 40 assignments + 19 additions + 8 divisions + 66 multiplications + 7 functions 3.3
Thus we only need 128 flops.

We need this function evaluation only in a standard programming language. Julia codes are similar to MATLAB. Maple
has a built-in code optimization for MATLAB (from Maple 2016 onwards one has the option to convert directly to Julia)

| Matlab(fct,optimize,output="reentry_f.m");

¥ §4. Programming the boundary conditions

The 6 boundary conditions on both the boundaries can be written easily. We must program the Transversality conditior
H(t=T) =0«

> rfct:= subs(seq(xi: xb;,i=1.. 6), [u=U,

solve

r,=H]J):

We do not program this function in this form because the cost would be 117 flops

> cost(rfct[]);
12 functions + 35 multiplications + 28 subscripts + 9 divisions + 2 assignments + 13 additions 4.1

Instead, we program with 82 flops:
> ropt:=[optimize(rfct,'tryhard’)]; cost(roptl[]);
t50 _
ropt == [t48 = xb,, t44 =1+ 148,159 = 5 150 =xb,, 158 = S 157 = p0 e PR 156 = Sim 157,154 = 150%, 152 = ¢, 151 = ¢5, 149 = xb,,
144

1 .
47 =N, 46 =N, 145 = ——, 142 =sin(149),u = arctan(

t51 t46 t45 1
DLEoME)
150° >

. 158
t52 47 9 15051 sin(u) 156 + (ol t45 t59j cos(t49)j 146

1
+ (-5 154 (c1 — 152 cos(u)) 156 — t42 t59j 47 + t42 7»3 158 + 10150 t54) t57 }

10 subscripts + 17 assignments + 9 additions + 6 divisions + 27 multiplications + 8 functions 4.2

Hence we program using the optimized function:
| > Matlab(rfct,optimize,output="reentry_bcm");

V¥ §5. Verification of the minimum principle

From the Pontryagin's Minimum principle we obtain the necessary condition for the existence of a minimal solution:
2

>0 < “E*}{Z
u

Let's we what we obtain:

2
>0< Simplify(a2 H)
ou

-BRx

1 .
0< ey Sm p0 e 3x1 (xl cycos(u) A, + ¢, sm(u)kz) 51

The condition is as follows (the control u is constrained to the interval , Which is equivalent to 0 < cos(u))

r T
27 2

> A X G+ A, cgtan(u) < 0:

and after subtituting the control from (2.7) we obtain
> subs(u=U %) : simplify (%)

solve ’
2,2 2 242
& klxl + 7»2

<0 (5.2
X ¢ A
finally A, < 0. From the formula for the control u = U,
c, A
u = arctan > 2 (5.3
&My X

it follows that A, # 0. Which leads toA, <0 verifying the minimum principle; this condition is an a posteriori check.

§6. Calculating a starting trajectory for the multiple shooting method

Newton's iteration applied to the multiple shooting method requires initial values for the state variables and the
adjoint variables. As long as the nodes of the multiple shooting method are not yet known, we need reasonable
starting values, that is starting trajectories, over the entire time interval. We can then determine the nodes of the
multiple shooting method using these starting trajectories.

The system of differential equations has a highly sensitive dependence on the inital values and also exhibits the
phenomenon of moving singularities. This is the mathematical formulation of the danger involved in the reentry
maneuver. This sensitivity is a consequence of the effect of atmospheric forces, and the physical interpretation of th«
singularity is a "crash" of the capsule or a "hurling back" into space. These phenomena are independent of the
problem of "failure due to heating" during re-entry, which we want to prevent and hence optimize the heating to a
minimum.

The idea to get a reasonable starting trajectory is the following: find a "half-decent" control u to solve the boundary
value problem (BVP), i.e. get a valid (but far from optimal) trajectory. Then Newton's method needs to only find a
better u such that the trajectory stays valid and the heat is optimized.

How to get a "half-decent" control-function u? In the linear case this would be the so called "bang-bang"-control, i.e

the control function u only takes one of the two values -n/2 and +r/2. Here +n/2 means maximal (up-)lift and -r/2
means minimal (up-)lift. At the beginning one would start with maximal (up-)lift in order to slowdown the fall, but
then at some time one would use minimal (up-)Ilift, in order to assure not to stay in outer space (in order to reach th
surface of the earth). Using this "half-decent" idea one has only one unknown, the time when to switch from +mr/2 tc
-nt/2. The control-function u has then the form:

- plot(_ msignum(t— 0.5)

2

, t=0..1, color = [red], thickness = 3)

1.5

0.57

0.2 0.4 0.6 0.8 1

-0.51

-1.51

Problem:

We thus obtained 3 differential equations, 6 constraints, but only two parameters (duration of the maneuver and the
switchover time). It lacks another parameter, here we take the amplitude of the control, not to be set to the full
maximum of -n/2. Moreover, the discontinuity of this bang-bang control is numerically unfavorable.

Thus we try a 2-parameter family of step-like function (x will be fixed):
> Uppge = by arctan(o (p, — t)) :

For p,=1and p, = % (which will also be our starting values) we obtain

on Slgnun;(t_ 0.5) , subs(pl =1,p,= é’ o = 25, Utestj

> plot(

, t=0..1, color = [red, green], thickness = 3)

1.5

0.5

0.2 0.4
0.5

-1.51

Now we need an initial guess for T. For this, we make a rough calculation. The differential equation for the normalized
height is,
d .
— h(t) = vsin ,
4 o (v)

we know that the velocity v should reduce from 36000 ft/sec to 27000ft/sec and the flight-path angle y should
increase from -8.1° to 0°. This results in the loss of 150000ft in the height. Setting all these constants in the average
values we obtain:

150000 ft / T = 30000 ft/sec sin(4°),

which gives

T = (150000 / 30000) (180/4/3) sec = 75 sec,

in the order of 1 minute.

Otherwise, we can only hope to solve the auxiliary boundary value problem with the forward or backward shooting. In
fact, the forward shooting suffers shipwreck (that is, a crashing of the capsule). However, the backward shooting
method provides a viable solution.

Thus we have a start trajectory! No, not quite. We have the start trajectory for the state variables. How to arrive at a
meaningful starting trajectory for the adjoint variables is discussed later in §8.

§7. Programming the auxiliary boundary value problem

Briefly
> feti=[u= Uy, seq(dx;=Tf;,i=1..3), seq(dx;=0,i=4.6)]:
> fct
B B 1 *BRX3 5 gsin(xz) - 1 *BRX3 '
u=p, arctan((x (pz—t)),dxl—T) Sm p0 e X (cl—c2 COS(M))_(1-|-)C)2 sdx, =T ESmpOe X, ¢y sin(u) (7.1
3

X, €08 (xz) g cos (xz) T'x, sin
_ ,dx, =
R(1+x) x1(1+x3)2 "

x
R(2) ,dx,=0,dx;=0,dx, =0

| > Matlab(fct, optimize, output = "aux_f.m")

¥ §8. Initial guess for the adjoint variables

From the Pontryagin's Minimum principle we obtain the necessary condition A, < 0. Thus we keep the starting value of

A, simply:
> kstart, 177" L:
setting this value in the optimal control we obtain an initial guess for 4, as:
> Ksmm 5= SOIVQ(SLII?S(?LI = Ksmm pu= Usolve), xz)
tan(u) ¢, x,
}\'start, 2 =T c (8'1

3

Finally using H= 0 (which is valid for the optimal solution) we obtain an initial guess for A,
> A = Sirmolify(Solve(subs(k1 = Ay =2 H= 0), kg))

start, 3 ° start, 1’ start, 2’
1 1 PRy 2 2 PRy 2
ksmrmzz—? . (x2—|—2x —I—l)cos(u)sin(x) e RSm pOc c; x| x;cos(u)+2e R Sm p0c, c; x| x; cos(u) 8.2
13 (%3 3 2

PR 2 2, PRy 2 PR 3 2 PRy 2
—e€ RSmpOc,c;xix; +e R Sm p0c, c;x; cos(u) +20 pOe Reyx xjcos(u) —2e RSm p0c, c; x| x

173
PRy 3 PRy 2 3 PRy 2
+40 pOe Rc,yx xycos(u) —e RSm pOc,c,x; +20x,y ple Rc, cos(u)—2sin(u)cos(x2)c x| x

27173

+ 2 sin(u) cos(xz) Rgc, —2sin(u) cos(xz) c, x? + 2gsin(x2) R, cos(u)]

We program these expressions which are to be evaluated as a function.

> fct:= [u:Utest,Seq(ki:k izl..S)]:

> Matlab(fct, optimize, output = "multiplier_start.m")
We will use the boundary value problem solver (bvpsol) from the ODEInterface package in Julia (https://github.
com/luchr/ODEInterface.jl)

start, i’

¥ §9. Create another function to help with the graphics of the solution

> fct:=[u= Uy, , h=H 6=o]:

> Matlab(fct, optimize, output = "utility.m")

