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Abstract

Does a halfspace filled with randomly placed cylinders behave, on average, like a

homogeneous halfspace? To answer this, we compare the reflection from a homoge-

neous halfspace with the average reflection from a halfspace filled with cylinders. In

the end we reach an absurd result for cylinders with Dirichlet boundary condition.

An explanation for this absurd result would be great.

Keywords: blue sky thinking

1 Reflection from a halfspace

We consider an incident plane wave

uin(x, y) = ei(αx+βy), with (α, β) = k(cos θin, sin θin),

and assume time-harmonic dependence of the form e−iωt. The incident wave uin(x, y)

is heading towards the interface x = 0, which divides two homogeneous materials. The
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material on the left (right) has wavenumber and density k and ρ (k∗ and ρ∗). The reflected

and transmitted wave will be of the form

uR = Rei(−xα+yβ) and uT = T ei(xα∗+yβ∗),

where k∗(cos θ∗, sin θ∗) = (α∗, β∗).

The boundary conditions for the acoustic pressure are

uin + uR = uT and
1

ρ

∂uin

∂x
+

1

ρ

∂uR
∂x

=
1

ρ∗

∂uT
∂x

, for x = 0,

from which we get Snell’s law

k sin θin = k∗ sin θ∗, (1)

and

R =
q∗ cos θin − cos θ∗
q∗ cos θin + cos θ∗

, with q∗ =
kρ∗
k∗ρ

. (2)

From this we can establish bounds such as |R| ≤ 1, can you prove this? What happens

when k∗ is a complex number? Later, we will see that the reflection coefficient from a

random mix of cylinders (with Dirichlet boundary condition), is unbounded! And the

problem is in the limit for small k. This is likely wrong, and we are not sure why.

2 Reflection from multiple random cylinders

2.1 Multipole method for cylinders

Here we give the exact theory for scalar multiple wave scattering from a finite number N

of circular cylinders. The pressure u outside all the cylinders satisfies the scalar Helmholtz
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equation

∇2u+ k2u = 0, (3)

and inside the jth cylinder the pressure uj satisfies

∇2uj + k2
ouj = 0, for j = 1, 2, . . . , N, (4)

where ∇2 is the two-dimensional Laplacian and

k = ω/c and ko = ω/co. (5)

We use for each cylinder the polar coordinates

Rj = ‖x− xj‖, Θj = arctan

(
y − yj
x− xj

)
, (6)

where xj is the centre of the j-th cylinder and x = (x, y) is an arbitrary point with origin

O. See Figure 1 for a schematic of the material properties and coordinate systems. Then

we can define uj as the scattered pressure field from the j-th cylinder,

uj(Rj,Θj) =
∞∑

m=−∞

Amj Z
mHm(kRj)e

imΘj , for Rj > aj, (7)

where Hm are Hankel functions of the first kind, Amj are arbitrary coefficients and Zm

characterises the type of scatterer:

Zm =
qJ ′m(ka)Jm(koa)− Jm(ka)J ′m(koa)

qH ′m(ka)Jm(koa)−Hm(ka)J ′m(koa)
= Z−m, (8)

with q = (ρok)/(ρko). In the limits q → 0 or q → ∞, the coefficients for Dirichlet or
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Figure 1: represents a multi-species material comprising different species of cylinders to
the right of the origin O = (0, 0). The vector xj points to the centre of the j-th cylinder,
with a local polar coordinate system (Rj,Θj). Each cylinder has a radius aj, density ρj,
and wave speed cj, while the background has density ρ and wave speed c. The vector k
is the direction of the incident plane wave.

Neumann boundary conditions are recovered, respectively.

The pressure outside all cylinders is the sum of the incident wave uin and all scattered

waves,

u(x, y) = uin(x, y) +
N∑
j=1

uj(Rj,Θj). (9)

and the total field inside the j-th cylinder is

uI
j(Rj,Θj) =

∞∑
m=−∞

Bm
j Jm(kjRj)e

imΘj , for Rj < aj. (10)

The unknown coefficients are determined through the boundary conditions of conti-
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nuity of pressure and normal velocity on the cylinder boundaries:

u = uI
j and

1

ρ

∂u

∂Rj

=
1

ρo

∂uI
j

∂Rj

, on Rj = a for j = 1, . . . , N. (11)

When the cylinders are far apart, the solution for the Amj are similar to the solution

for one lone cylinder scattering the incident wave uin, which is

Amj = −ime−imθineixj ·k. (12)

Using the above and assuming the cylinders are far apart, the scattered field far away

from the cylinder (7) becomes

lim
Rj→∞

uj(Rj,Θj) ∼
√

2

πkRj

f◦(Θj − θin)eikRj−iπ/4, (13)

where

f◦(θ) = −
∞∑

m=−∞

eimθZm. (14)

2.2 Ensemble average

For an introduction to ensemble-averaging of multiple scattering see Foldy (1945).

Consider a configuration of N circular cylinders centred at x1,x2, . . . ,xN . Each xj is

in the region RN , where n = N/|RN | is the total number density and |RN | is the area

of RN . The probability of the cylinders being in a specific configuration is given by the

probability density function p(x1,x2, . . . ,xN), so that

∫
p(x1)dx1 =

∫ ∫
p(x1,x2)dx1dx2 = . . . = 1. (15)
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And as the cylinders are indistinguishable: p(x1,x2) = p(x2,x1).

Furthermore, we have

p(x1, . . . ,xN) = p(xj)p(x1, . . . ,xN |xj), (16)

p(x1, . . . ,xN |xj) = p(x`|xj)p(x1, . . . ,xN |x`,xj), (17)

where p(x1, . . . ,xN |xj) is the conditional probability of having cylinders centred at x1, . . . ,xN

(not including xj), given that the j-th cylinder is fixed at xj. Likewise, p(x1, . . . ,xN |x`,xj)

is the conditional probability of having cylinders centred at x1, . . . ,xN (not including x`

and xj) given that there are already two cylinders centred at x` and xj.

Given some function F (x1, . . . ,xN), we denote its average, or expected value, by

〈F 〉 =

∫
. . .

∫
F (x1, . . . ,xN)p(x1, . . . ,xN)dx1 . . . dxN . (18)

If we fix the location and properties of the j-th cylinder, xj and average over all the

properties of the other cylinders, we obtain a conditional average of F given by

〈F 〉xj
=

∫
. . .

∫
F (x1, . . . ,xN)p(x1, . . . ,xN |xj)dx1 . . .xN , (19)

where we do not integrate over xj. The average and conditional averages are related by

〈F 〉 =

∫
〈F 〉xj

p(xj) dxj and 〈F 〉xj
=

∫
〈F 〉xjx`

p(x`) dx`, (20)

where 〈F 〉x`xj
is the conditional average when fixing both xj and x`, and 〈F 〉x`xj

=

〈F 〉xjx`
.

We can now calculate the average total pressure (incident plus scattered), measured
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at some position x outside of RN , by averaging (9) to obtain

〈u(x, y)〉 = uin(x, y) +
N∑
j=1

∫
. . .

∫
uj(Rj,Θj)p(x1, . . . ,xN)dx1 . . . dxN , (21)

where 〈uin(x, y)〉 = uin(x, y), because the incident field is independent of the scattering

configuration. We can then rewrite the average outgoing wave uj by fixing the properties

of the j-th cylinder xj and using equation (16) to reach

〈u(x, y)〉 − uin(x, y) =
N∑
j=1

∫
〈uj(Rj,Θj)〉xj

p(xj)dxj = N

∫
〈u1(R1,Θ1)〉x1p(x1)dx1. (22)

Likewise, for the conditionally averaged scattered field (7) measured at x we obtain

〈u1(R1,Θ1)〉x1 =
∞∑

m=−∞

〈Am1 〉x1Z
mH(1)

m (kR1)eimΘ1 . (23)

We will use the simplest approximations possible, which are a random uniform distri-

bution

p(x1) =
1

|RN |
, (24)

which combined with (22) and (23), and taking the limit N → ∞ with RN turning into

a halfspace x1 > 0, leads to

〈u(x, y)〉 = uin(x, y) + n

∞∑
m=−∞

Zm

∫
x1>0

〈Am1 〉x1H
(1)
m (kR1)eimΘ1dx1. (25)

When x < 0, the above turns into the incident wave plus the average reflected field from

the halfspace x > 0.

7



2.3 Effective medium approach

The simplest approach is to assume that, on average, the wave exciting a scatterer is a

plane wave. That is, for x1 > 0, we assume

〈Am1 〉x1 = ime−imθ∗Am∗ eix·k∗ , for x > 0, (26)

where the constant factor ime−imθ∗ is just for later convenience, Am∗ is an unknown constant

(for now), and we define

k∗ = (α∗, β) := k∗(cos θ∗, sin θ∗), (27)

and from Snell’s law

k∗ sin θ∗ = k sin θin, (28)

noting that both θ∗ and k∗ are complex numbers.

Am∗ (s1) + 2πn
∞∑

n=−∞

∫
S
An∗ (s2)

[Nn−m(ka12, k∗a12)

k2 − k2
∗

]
dsn2 = 0, (29)

∞∑
n=−∞

ein(θin−θ∗)

∫
S
An∗ (s2)dsn2 = (α∗ − α)

αi

2n
, (30)

where

dsn2 = Zn(s2)p(s2)ds2, (31)

we used whole-correction and ignored the boundary layer (which disappears in the low-

frequency limit anyway). The above equations are sufficient to completely determine k∗

and An∗ .
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First using k∗ = ck/c∗:

Nn(ka12, k∗a12) ∼ 2ic|n|

πc
|n|
∗

+O(k2),

because this does not depend on the species, we can move it outside the integral in (29),

multiple Zm(s1)p(s1) on both sides of the equation and then integrate in s1 to reach,

〈Am∗ 〉m +
4in

k2

c2
∗

c2
∗ − c2

1∑
n=−1

c|n−m|

c
|n−m|
∗

〈An∗ 〉n〈Zm〉 = 0, (32)

where

〈Am∗ 〉m =

∫
S
Am∗ (so)ds

m
o , 〈Zn〉 =

∫
S
Zn(so)p(so)dso, (33)

〈Z0〉 =
ik2π

4
〈ao

βo − β
βo
〉, 〈Z1〉 = 〈Z−1〉 =

ik2π

4
〈a2
o

ρ− ρo
ρ+ ρo

〉, (34)

ao is the radius∗ of the species so, and we define 〈f〉m = 〈fZm〉.

Equation (32) is now in the same form as the single species equation. By evalu-

ating (32) for m = −1, 0, 1, we reach three equations with unknowns 〈A−1
∗〉−1, 〈A0

∗〉0,

〈A1
∗〉1, and c∗. By forming a matrix equation for the 〈Am∗〉m, then setting the determinant

of this matrix to zero, and solving for c∗, we reach

c2
∗ =

β∗
ρ∗
, with

1

β∗
=

1− nπ〈a2
o〉

β
+ nπ〈a

2
o

βo
〉, ρ∗ = ρ

1− nπ〈a2
o
ρ−ρo
ρ+ρo
〉

1 + nπ〈a2
o
ρ−ρo
ρ+ρo
〉 . (35)

Using the above in (32), we can reach

〈A0
∗〉0 = 2

β − β∗
ρ− ρ∗

√
ρρ∗
ββ∗
〈A1
∗〉1 and 〈A−1

∗〉−1 = 〈A1
∗〉1. (36)

∗If you find the appearance of the radius ao strange, have a look at the next section.
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To determine 〈A1
∗〉 we use (30), which leads to

〈A1
∗〉1 = (ρ− ρ∗) cos θin

ia2k2π

4φ

cos θin −
√

ρ∗β
ρβ∗

cos θ∗√
β∗ρρ∗
β

(
β
β∗
− 1
)
− (ρ− ρ∗) cos(θin − θ∗)

. (37)

2.4 A discrete number of species

Here we show what are the effective properties (39) when there are a discrete number of

species.

The definition of the probability density p(so), is that given any point x, p(so) is the

probability of finding a particle of species so centred at x. This means that if there are

S species uniformly distributed we can use p(so)dso = no
n

, where no is the number density

of the species so. For example:

nπ〈f(βo, ρo)a
2
o〉 = nπ

S∑
j=1

a2
jf(βj, ρj)

nj
n

=
S∑
j=1

φjf(βj, ρj), (38)

where φj = πa2
jnj is the volume fraction of the j-th species.

This leads to the discrete version of the effective properties:

1

β∗
=

1− φ
β

+
∑
j

φj
βj
, ρ∗ = ρ

1−∑j φj
ρ−ρj
ρ+ρj

1 +
∑

j φj
ρ−ρj
ρ+ρj

. (39)

2.5 Average low-frequency reflection

To calculate the average reflected field (25), we use (26),

(∇2 + k2
∗)〈Am1 〉x1 and (∇2 + k2

∗)H
(1)
m (kR1)eimΘ1 ,
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which allows us to use Green’s second identity, or more specifically equation (88) from

Gower et al. (2017), to calculate

∫
x1>0

eiα∗x1+iβy1H(1)
m (kR1)eimΘ1dx1 = e−iαx+iβy 2

α

(−i)−mi

α + α∗
e−imθin . (40)

Substituting the above into (25) we get

〈u(x, y)〉 = uin(x, y) +Roe
−iαx+iβy, θref = π − θ∗ − θin, (41)

Ro =
1

a2πk cos θin

2iφ

k cos θin + k∗ cos θ∗

∞∑
m=−∞

eimθref 〈Am∗ 〉m. (42)

Substituting (36) and (37) we reach, after algebraic manipulation, that

Ro = R =
q∗ cos θin − cos θ∗
q∗ cos θin + cos θ∗

, with q∗ =

√
ρ∗β∗
ρβ

.
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