Average reflection from a random particulate material

Artur L. Gower®

¢ School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

April 21, 2018

Abstract

Does a halfspace filled with randomly placed cylinders behave, on average, like a
homogeneous halfspace? To answer this, we compare the reflection from a homoge-
neous halfspace with the average reflection from a halfspace filled with cylinders. In
the end we reach an absurd result for cylinders with Dirichlet boundary condition.

An explanation for this absurd result would be great.

Keywords: blue sky thinking

1 Reflection from a halfspace

We consider an incident plane wave

U (x,y) = @) with (o, B) = k(cos by, sin byy,),

and assume time-harmonic dependence of the form e™“! The incident wave u,(x,y)

is heading towards the interface x = 0, which divides two homogeneous materials. The



material on the left (right) has wavenumber and density k and p (k. and p,). The reflected

and transmitted wave will be of the form

up = RECTYE)and  wp = Tel@etvi),

where k,(cosb,,sinb,) = (o, By).

The boundary conditions for the acoustic pressure are

1 Ouyy N lauR 1 Our

in - d - A T T & f;
Uyp + UR = Ur an » or » 0x . Oz or
from which we get Snell’s law
ksin 0y, = k, sinf,,
and
R G+ oS By, — cos 8*7 with g, — kp*.
s cos By, + cos b, k.p

(2)

From this we can establish bounds such as |R| < 1, can you prove this? What happens

when k, is a complex number? Later, we will see that the reflection coefficient from a

random mix of cylinders (with Dirichlet boundary condition), is unbounded! And the

problem is in the limit for small k. This is likely wrong, and we are not sure why.

2 Reflection from multiple random cylinders

2.1 Multipole method for cylinders

Here we give the exact theory for scalar multiple wave scattering from a finite number N

of circular cylinders. The pressure u outside all the cylinders satisfies the scalar Helmholtz



equation

V2u + k*u = 0, (3)

and inside the jth cylinder the pressure u; satisfies

VZu; + kZu; =0, forj=1,2,...,N, (4)
where V2 is the two-dimensional Laplacian and
k=w/c and k,=w/c,. (5)
We use for each cylinder the polar coordinates
R; =|x — x|, ©;=arctan <‘z:—zjj> , (6)

where x; is the centre of the j-th cylinder and x = (z,y) is an arbitrary point with origin
O. See Figure [l] for a schematic of the material properties and coordinate systems. Then

we can define u; as the scattered pressure field from the j-th cylinder,

Uj(Rj, @J) = Z A?ZmHm(k?Rj)eimej, for Rj > aj, (7)

where H,, are Hankel functions of the first kind, A7* are arbitrary coefficients and 2™

characterises the type of scatterer:

m QT (ka) T (kea) — T (ka) ), (Kea)
7= qH!, (ka)Jm (koa) — Hy(ka)J!, (koa) — 27 (8)

with ¢ = (p.k)/(pk,). In the limits ¢ — 0 or ¢ — oo, the coefficients for Dirichlet or



Figure 1: represents a multi-species material comprising different species of cylinders to
the right of the origin O = (0,0). The vector x; points to the centre of the j-th cylinder,
with a local polar coordinate system (R;, ©,). Each cylinder has a radius a;, density p;,
and wave speed c;, while the background has density p and wave speed c. The vector k
is the direction of the incident plane wave.

Neumann boundary conditions are recovered, respectively.
The pressure outside all cylinders is the sum of the incident wave wu;, and all scattered

waves,

u($7y> :uin(xvy)+zuj(Rj7@j)' (9)

and the total field inside the j-th cylinder is

U;(Rj, @J) = Z B;-njm(ijj)eimej, for Rj < a;. (].O)

m=—0oQ

The unknown coefficients are determined through the boundary conditions of conti-



nuity of pressure and normal velocity on the cylinder boundaries:

1 1 Oul
u=u; and ;%:p—ﬁ, on Rj=a for j=1,...,N. (11)
j o O1L;

When the cylinders are far apart, the solution for the A7 are similar to the solution

for one lone cylinder scattering the incident wave u;,, which is

A;n — _imefimeineix]'-k. (12)

Using the above and assuming the cylinders are far apart, the scattered field far away

from the cylinder becomes

2

i iRy, ;) vy | 1o(O; = i), (13)
where
fol0) == Y emizm. (14)

2.2 Ensemble average

For an introduction to ensemble-averaging of multiple scattering see Foldy| (1945).
Consider a configuration of N circular cylinders centred at x;,x%s,...,xy. Each x; is

in the region Ry, where n = N/|Ry| is the total number density and |Ry| is the area

of Ry. The probability of the cylinders being in a specific configuration is given by the

probability density function p(xi,Xs,...,Xy), so that

/p(xl)dxl _ //p(xl,xg)dxldXQ — -1 (15)



And as the cylinders are indistinguishable: p(xi,Xs) = p(X2,X1).

Furthermore, we have

p(X1,. .., Xn) = p(x;)p(x1, . . ., XN|X;), (16)

p(xb s 7XN|Xj) = P(Xé‘xj)p(xlv R >XN‘X€7 Xj)? (17>

where p(xy, ..., Xy|x;) is the conditional probability of having cylinders centred at x5, ..., Xx

(not including x;), given that the j-th cylinder is fixed at x;. Likewise, p(x1, ..., xn|x¢, X;)
is the conditional probability of having cylinders centred at xi,...,xy (not including x,
and x;) given that there are already two cylinders centred at x, and x;.

Given some function F(x,...,Xy), we denote its average, or expected value, by

(F) :/.../F(xl,...,XN)p(Xl,...,XN)dxl...de. (18)

If we fix the location and properties of the j-th cylinder, x; and average over all the

properties of the other cylinders, we obtain a conditional average of F' given by

(F)x, :/.../F(Xl,...,XN)p(Xl,...,xN]xj)dxl...XN, (19)

where we do not integrate over x;. The average and conditional averages are related by

(F) = /(F)ij(xj)dxj and (F)x, = /(F>xjx@p(xz) dxy, (20)

where (F)y,, is the conditional average when fixing both x; and x,, and (F)yx, =
(F) e

We can now calculate the average total pressure (incident plus scattered), measured



at some position x outside of Ry, by averaging @ to obtain

(u(z, y)) :um(x,y)+Z/.../uj<3j,@j)p<xl,...,XN)dxl...de, (21)

where (ui,(x,y)) = ui(x,y), because the incident field is independent of the scattering
configuration. We can then rewrite the average outgoing wave u; by fixing the properties

of the j-th cylinder x; and using equation to reach

(u(r,y)) — uin(r,y) :Z/<uj(Rj76j)>xjp(Xj)de = N/(“l(Rla@l»xlp(Xl)Xm- (22)

Likewise, for the conditionally averaged scattered field measured at x we obtain

(W1(R1,01))s, = Y (A7) Z"H) (kRy)e™®". (23)

We will use the simplest approximations possible, which are a random uniform distri-

bution

1
p(x1) = Rl (24)

which combined with and , and taking the limit N — oo with Ry turning into

a halfspace x; > 0, leads to

(u(z,y)) = wnlz,y) +0 Y 2™ [ (A7) H (kR )™ dx,. (25)

m=—00 x1>0

When z < 0, the above turns into the incident wave plus the average reflected field from

the halfspace z > 0.



2.3 Effective medium approach

The simplest approach is to assume that, on average, the wave exciting a scatterer is a

plane wave. That is, for z; > 0, we assume

<AT>X1 — ime—imﬁ*"Ll;r(neix.k*7 for 1 > O, (26)

where the constant factor i™e™ "% is just for later convenience, A™ is an unknown constant

(for now), and we define

k., = (o, ) := ki(cosb,,sinb,), (27)

and from Snell’s law

k,sinf, = ksin 6;,, (28)

noting that both 6, and k, are complex numbers.

AP(s) +2mn S /S A (s5) {N”—méfa_”];f*“”) dst = 0, (29)

n=—oo

o0 o " n ad
Z em(em 04) / A* (SQ)dSQ = (Of* - a)2_a (3())
s n

n=—oo

where

dsh = Z"(s2)p(ss)dsa, (31)

we used whole-correction and ignored the boundary layer (which disappears in the low-

frequency limit anyway). The above equations are sufficient to completely determine k.

and A7.



First using k. = ck/c,:

2icln!

In|

T Cx

N (kara, kvaig) ~ + O(k?),

because this does not depend on the species, we can move it outside the integral in ,

multiple Z™(s;)p(s1) on both sides of the equation and then integrate in s; to reach,

4i 2 L |n—m]|
A"+ T3 = 2 A2 =0 (32)
where
(Amym /S AT (s,)ds, (Z7) = /S Z"(50)p(50)ds. (33)
kP, B, - N e GRPT, o0 —po
(2%) = = a5, (2 = (27 = =, (34)

a, is the radiug’ of the species s,, and we define (f)™ = (fZ™).

Equation (32) is now in the same form as the single species equation. By evalu-
ating for m = —1,0,1, we reach three equations with unknowns (A=1,)~1, (A%
(AN and ¢,. By forming a matrix equation for the (A™,)™, then setting the determinant

of this matrix to zero, and solving for c¢,, we reach

2 P—pPo
s Ba 1 1—nn(a?) a? 1 —nm(azt7E2)
= I th - = + /s * — — . 35
“= o VB, B R Suprr=r S
0 p+po
Using the above in , we can reach
(A0 = o0 =B [ pp: (ADY and (A1) = (AN (36)

*If you find the appearance of the radius a, strange, have a look at the next section.

9



To determine (A',) we use (30), which leads to

«3
ia?k?m cos O — \V pﬁ cos b
<~Ai>1 = (p — p«) cos by, 40 5 8 - —6,) 0
B (L 1) = (p— pa) cos(bin — 6.)

2.4 A discrete number of species

Here we show what are the effective properties when there are a discrete number of
species.

The definition of the probability density p(s,), is that given any point x, p(s,) is the
probability of finding a particle of species s, centred at . This means that if there are
S species uniformly distributed we can use p(s,)ds, = %2, where n, is the number density

of the species s,. For example:

S

S
n(f(Bos po)aZ) = v Y @ F (B0 2 = D2 03 (By.0,), (38)

J=1

where ¢; = ﬂajznj is the volume fraction of the j-th species.

This leads to the discrete version of the effective properties:

1 1—¢ 925]‘ 1_21‘%’2;2
L ) v N 39
DR D Dyl v sy 39

2.5 Average low-frequency reflection

To calculate the average reflected field , we use ,

(V24+E2)(A™),, and (V2 + kHHD(kRy)e™o1,

10



which allows us to use Green’s second identity, or more specifically equation (88) from

Gower et al| (2017), to calculate

o . gy 2 (=)
ela*x1+16y1 H(1)<k’R1)elm®1 Xm —e iax+ify < e 1m9m‘
x1>0 " Qo

Substituting the above into (25)) we get

<U(£L’, y)> = uin(xa ?J) + Roeiiaeriﬁy, eref =T = 0* - eina

1 2i .
Ro _ 1¢ Z e1m9ref <.Ain>m

a?wk cos Oy, k cos Oy, + k, cos b, -

=—00

Substituting and we reach, after algebraic manipulation, that

with ¢, = pels
s cos Oy, + cosb,’ * pB

s cos By, — cos b,

R,=R
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