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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Physics Based Machine Learning

Classical physical modeling relies on efficient numerical schemes for
discretizing conservation laws derived from first principles; deep
learning learns statistical relations from large amounts of training
data.
We combine the best of the two worlds and invent physics based
machine learning: only the unknown is modeled with deep neural
networks, and the known physical laws are solved with numerical
schemes.
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Back-propagation
=

Automatic Differentiation
=

Adjoint-State Method
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Automatic Differentiation: Computational Graph

A computational graph is a functional description of the required
computation. In the computational graph, an edge represents data,
such as a scalar, a vector, a matrix or a tensor. A node represents a
function (operator) whose input arguments are the the incoming
edges and output values are are the outcoming edges.

How to build a computational graph for z = sin(x1 + x2) + x22x3?
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Automatic Differentiation: Reverse-Mode

The reverse-mode automatic differentiation relies on the chain rule

∂f ◦ g(x)
∂x

=
∂f ′ ◦ g(x)

∂g

∂g ′(x)

∂x

Let’s see how to compute ∂z
∂xi

, i = 1, 2, 3 for z = sin(x1 + x2) + x22x3
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Automatic Differentiation: Mathematical Description

A computational graph starts from
independent variables x1, x2, . . ., xn,
which are transformed by the compo-
sition of operators fk , k = n+ 1, n+
2, . . . ,N

xn+1 = fn+1(xπ(n+1))

xn+2 = fn+2(xπ(n+2))

. . .

xN = fN(xπ(N))

where π(i) ∈ {1, 2, . . . , i − 1}.
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Automatic Differentiation: Mathematical Description

Theorem (Chain Rule)

∂xN(x1, x2, . . . , xi )

∂xi
=

!

j : i∈π(j)

∂xN(x1, x2, . . . , xj)

∂xj

∂xj(x1, x2, . . . , xj−1)

∂xi
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ADCME

ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

ADCME simplifies programming and improves performance.
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ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.
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ADSeismic.jl: Earthquake Location Example

The earthquake source function is parameterized by (g(t) and x0 are
unknowns)

f (x , t) =
g(t)

2πσ2
exp

"
− ||x − x0||2

2σ2

#
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ADSeismic.jl: Benchmark

ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.
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NNFEM.jl: Constitutive Modeling

σij ,j$%&'
stress

+ρ bi$%&'
external force

= ρ üi$%&'
velocity

εij$%&'
strain

=
1

2
(uj ,i + ui ,j)

(1)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui ); density ρ is known.

Unobservable: stress σij .

Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = Mθ(strain, . . .) (2)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robustic Constitutive Modeling

Proper form of constitutive relation is crucial for numerical stability

Elasticity ⇒ σ = Cθε

Hyperelasticity ⇒
!
σ = Mθ(ε) (Static)

σn+1 = Lθ(ε
n+1)Lθ(ε

n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity ⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =

"

######$

L1111

L2211 L2222

L3311 L3322 L3333

L2323

L1313

L1212

%

&&&&&&'

Weak convexity: LθL
T
θ ≻ 0

Time consistency: σn+1 → σn when εn+1 → εn
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NNFEM.jl: Robustic Constitutive Modeling

Weak form of balance equations of linear momentum

Pi (θ) =

(

V

ρüiδuidVt +

(

V

σij(θ)) *+ ,
embedded neural network

δεijdV

Fi =

(

V

ρbiδuidV +

(

∂V

tiδuidS

Train the neural network by

L(θ) = min
θ

N!

i=1

(Pi (θ)− Fi )
2

The gradient ∇L(θ) is computed via automatic differentiation.
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NNFEM.jl: Robustic Constitutive Modeling
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NNFEM.jl: Robustic Constitutive Modeling

Comparison of different neural network architectures

σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(ε
n+1, εn,σn)

σn+1 = NNθ(ε
n+1, εn,σn) + σn
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Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
operators that can be expressed
by differentiable library
functions.

A large portion of scientific
computing algorithms involve
implicit schemes or iterative
procedures to some extent.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ax = y
Nonlinear Implicit F (x , y) = 0
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Physics Constrained Learning

Let Lh be a error functional, Fh be the corresponding nonlinear
implicit operator, θ be all the input to this operator and uh be all the
output of this node.

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume in the forward computation, we solve for uh = Gh(θ) in
Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+

∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0 ⇒

∂Gh(θ)

∂θ
= −

"∂Fh(θ, uh)

∂uh

#−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=

∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

"∂Fh(θ, uh)

∂uh

$$$
uh=Gh(θ)

#−1 ∂Fh(θ, uh)

∂θ

$$$
uh=Gh(θ)
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Physics Constrained Learning

∂L̃h(θ)

∂θ
= −

∂Lh(uh)

∂uh

"∂Fh(θ, uh)

∂uh

$$$
uh=Gh(θ)

#−1 ∂Fh(θ, uh)

∂θ

$$$
uh=Gh(θ)

Step 1: Calculate w by solving a lin-
ear system (never invert the matrix!)

wT =
∂Lh(uh)

∂uh

% &' (
1×N

"∂Fh

∂uh

$$$
uh=Gh(θ)

#−1

% &' (
N×N

Step 2: Calculate the gradient by
automatic differentiation

wT ∂Fh

∂θ

$$$
uh=Gh(θ)% &' (
N×p

=
∂(wT Fh(θ, uh))

∂θ

$$$$$
uh=Gh(θ)

Step 1: Calculate z by solving a lin-
ear system (never invert the matrix!)

z =
"∂Fh

∂uh

$$$
uh=Gh(θ)

#−1

% &' (
N×N

∂Fh

∂θ

$$$
uh=Gh(θ)% &' (
N×p

Step 2: Calculate the gradient

∂Lh(uh)

∂uh% &' (
1×N

z

Which strategy should we use?
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Physics Constrained Learning: Linear System

Many physical simulations require solving a linear system

Fh(θ1, θ2, uh) = θ1 − A(θ2)uh

The backpropagation formula

p :=
∂L̃h(θ1, θ2)

∂θ1
=

∂Lh(uh)

∂uh
A(θ2)

−1

q :=
∂L̃h(θ1, θ2)

∂θ2
= −∂Lh(uh)

∂uh
A(θ2)

−1∂A(θ2)

∂θ2

which is equivalent to

ATpT =

"
∂Lh(uh)

∂uh

#T

q = −p
∂A(θ2)

∂θ2
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FwiFlow.jl: Elastic Full Waveform Inversion for subsurface
flow problems with intelligent automatic differentiation
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FwiFlow.jl: Fully Nonlinear Implicit Schemes

The governing equation is a nonlinear PDE

∂

∂t
(φSiρi ) +∇ · (ρivi ) = ρiqi , i = 1, 2

S1 + S2 = 1

vi = −
Kkri

µ̃i
(∇Pi − gρi∇Z), i = 1, 2

kr1(S1) =
ko
r1S

L1
1

SL1
1 + E1S

T1
2

kr2(S1) =
SL2
2

SL2
2 + E2S

T2
1

For stability and efficiency, implicit methods are the industrial
standards.

φ(Sn+1
2 − Sn

2 )−∇ ·
)
m2(S

n+1
2 )K∇Ψn

2

*
∆t =

+
qn2 + qn1

m2(S
n+1
2 )

m1(S
n+1
2 )

,
∆t mi (s) =

kri (s)

µ̃i

It is impossible to express the numerical scheme directly in an AD
framework. Physics constrained learning is used to enhance the AD
framework for computing gradients.
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FwiFlow.jl: Showcase

Task 1: Estimating the permeability from seismic data

Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

f1(S1; θ1) ≈ kr1(S1) f2(S1; θ2) ≈ kr2(S1)
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FwiFlow.jl: Showcase

Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics is history dependent.

Governing Equation σ = 0 σ = 5

C
0 D

0.8
t m = 10∆m

a/a∗ = 1.0000
α = 0.8000

a/a∗ = 0.9109
α = 0.7993

C
0 D

0.2
t m = 10∆m

a/a∗ = 0.9994
α = 0.2000

a/a∗ = 0.3474
α = 0.1826

∂m
∂t = −10(−∆)0.2m

a/a∗ = 1.0000
s = 0.2000

a/a∗ = 1.0378
s = 0.2069

∂m
∂t = −10(−∆)0.8m

a/a∗ = 1.0000
s = 0.8000

a/a∗ = 1.0365
s = 0.8093
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A Parameter/Function Learning View of Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (3)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint
State Method

c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ fw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning
f (u) ≈ fw (u)

∇ · (ϖ∇u(x)) = 0 Stochastic Inverse Problem Generative Neural Networks ϖ = fw (vlatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

1 Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

2 Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.

1 The AD technique is not new; it has existed for several decades and many software exists.

2 The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

3 As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

4 However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.
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A General Approach to Inverse Modeling
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