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Inverse Modeling

o Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Physics Based Machine Learning

o Classical physical modeling relies on efficient numerical schemes for
discretizing conservation laws derived from first principles; deep
learning learns statistical relations from large amounts of training
data.

@ We combine the best of the two worlds and invent physics based
machine learning: only the unknown is modeled with deep neural
networks, and the known physical laws are solved with numerical
schemes.

Data

+ FW\ VF ‘TT“rUrU__ ~

1t

First Principles Numerical Schemes

Inverse Modeling Neural Networks

ADCME Physics Based Machine Learning 4 /33



Outline

© Automatic Differentiation for Inverse Modeling
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.
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Automatic Differentiation: Computational Graph

@ A computational graph is a functional description of the required
computation. In the computational graph, an edge represents data,
such as a scalar, a vector, a matrix or a tensor. A node represents a
function (operator) whose input arguments are the the incoming
edges and output values are are the outcoming edges.

e How to build a computational graph for z = sin(x; + x2) + x3x37?

T : T sin(x; +x,) + x:z,n
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Automatic Differentiation: Reverse-Mode

@ The reverse-mode automatic differentiation relies on the chain rule

Of og(x)  0f' o g(x) 0g’'(x)
ox N 0g Ox

o Let's see how to compute g—;, i=1,2,3for z=sin(x1 + x2) + x3x3
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Automatic Differentiation: Mathematical Description

A computational graph starts from
independent variables x1, x2, ..., Xp,

1
which are transformed by the compo- @)
sition of operators f, k=n+1,n+ IS
2N e
| | l
Xn+1 = n+1(x7r(n+1)) O O O

Xn42 = fpi2(Xn(n12)) Y )/ XNO

xn = fu(Xr(n)) [ ® I ) =

where (i) € {1,2,...,i — 1}.
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Automatic Differentiation: Mathematical Description

Theorem (Chain Rule)

aXN(XhXZv---in): Z Oxn(x1, X2, .., Xj) Oxj(X1, X2, . . ., Xj—1)
Ox; Ox; ox;

jrien(j)

Oxy(Xp, X, -, X;) X (X, X9, .. X))
ox; 0x;,
DXy Xy -y X7) _ 0xp(X), Xy, s X)) dx](x,.xz, s Xisg)
ox; 0x; 0x;

Jriea(j) J
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ADCME

o ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

o ADCME simplifies programming and improves performance.

w8t Dlau=V-(E Vi) +V-9,
¢ =T1¢p+T2Vu,

' e[ ) [0 %)

PML equations

Discretization
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ADSeismic.jl: A General Approach to Seismic Inversion

@ Many seismic inversion problems can be solved within a unified
framework.
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ADSeismic.jl: Earthquake Location Example
@ The earthquake source function is parameterized by (g(t) and xp are

unknowns) ) | "
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ADSeismic.jl: Benchmark

o ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.

50 175
150
40
= 125
E 30 _5,3 100
o P
E 20 E s
50
10 2
o 0 x
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Number of grids (Nx x Ny) 1le5 Number of grids (Nx x Ny) 1e5
(a) (b)
Sum —
T GPU:0 \‘ GPUL
Optimizer
Gradients Gradients
* *
Loss Loss
CPU t t
Model Model
(c)
ADCME Physics Based Machine Learning

14 / 33



NNFEM.jl: Constitutive Modeling

oijj +p b; =p U
~—~ ~~ ~~
stress  external force velocity )
1
ej = 5(uji+ uij)
~
strain

o Observable: external/body force b;, displacements u; (strains ej; can
be computed from u;); density p is known.

@ Unobservable: stress 0.

o Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (2)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robustic Constitutive Modeling

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)

o'l = L9(6n+1)L9(6n+1)T(En+l _ 6”) +o" (DynamiC)

Elaso-Plasticity = o""" = Lo(e"',€",6")Lo(e" ", €",6") (" — €") + &

Hyperelasticity = {

Ly
Loo11 Loz
Lo — L33z L33z Lass3
L2323
L1313

Lio1z
o Weak convexity: Lgl_;— >0

e Time consistency: ™! — " when ™! — €”
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NNFEM.jl: Robustic Constitutive Modeling

@ Weak form of balance equations of linear momentum

P,‘(Q):/pil','(su,'d\/t-l—/UU(e)(Sé‘,jd\/
v VS~~~

embedded neural network
Fi —/pb5u,dV+/ tidu;dS
av

@ Train the neural network by

N
L(6) = min > (Pi(0) -
i=1

The gradient VL(#) is computed via automatic differentiation.
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ADCME

« Calibrated
Reference

NNFEM.jl: Robustic Constitutive Modeling

« Calibrated
Reference
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NNFEM.jl: Robustic Constitutive Modeling

@ Comparison of different neural network architectures

o™ = NNg(e" €", ")
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Outline

© Beyond Automatic Differentiation: Physics Constrained Learning
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Challenges in AD

@ Most AD frameworks only deal T I
with explicit operators, i.e., the ey © @ R
operators that can be expressed X
by differentiable library T / T A
functions. e

@ A large portion of scientific Explicit Operator  Implicit Operator

computing algorithms involve
implicit schemes or iterative
procedures to some extent.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F(x)
Linear Implicit Ax =y
Nonlinear Implicit F(x,y)=0
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Physics Constrained Learning

o Let Ly be a error functional, F, be the corresponding nonlinear
implicit operator, 6 be all the input to this operator and uy, be all the
output of this node.

main Lh(uh) s.t. Fh(é?, uh) =0
@ Assume in the forward computation, we solve for u, = Gx(0) in
Fn(0, up) =0, and then

L(0) = La(Gn(0))
@ Applying the implicit function theorem
BF/,(G, uh) BFh(g, uh) 8Gh(6’) 8Gh(9) - (6Fh(9, uh) ) -1 8Fh(97 uh)

=0
6 dun 00 ~ o9 Bun 6
o Finally we have
OLn(6) _ OLp(up) 9Gh(6) _  OLn(un) (3Fh(97Uh) )—1 OFn(6, up)
00 oup o0 dup Ouy, up=Gp(0) 00 up=G(0)
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Physics Constrained Learning

oLn(6) _  OLn(up)

a0 dup,

th(ey Uh)
Oup,

(

-1 th(07 Uh)
00

Uh:Gh(9)> up=Gp(0)

Step 1: Calculate w by solving a lin-
ear system (never invert the matrix!)

T — 9Ln(un) (% )*1
Buh auh up=Gp(0)
—— NxN
IxN

Step 2: Calculate the gradient by
automatic differentiation

Step 1: Calculate z by solving a lin-
ear system (never invert the matrix!)

9Fh
00

OF,
Gar

)—1
up=Gp(0) up=Gp(0)

NxN Nxp

Step 2: Calculate the gradient

oL

n(un) ,
Jup
IxXN

Which strategy should we use?

WwT OFh _ O(wT Fh(0, un))
0 lu,= 6
0 h=5h(6) o up=Gp(0)
Nxp
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Physics Constrained Learning: Linear System

@ Many physical simulations require solving a linear system
Fn(01,02, up) = 01 — A(02)up
@ The backpropagation formula

_ OLp(61.62) _ OLp(up)

- A -1
06, duy, (02)
L 8[,,(01,02) . 8Lh(uh) 1 6/4(92)
T 96, ou, A(02) 00,

which is equivalent to

OLp(up)\ " DA(0,)
7,7 _ (9Entn) __
A P _< 8uh ) 9 P 802
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FwiFlow.jl: Elastic Full Waveform Inversion for subsurface
flow problems with intelligent automatic differentiation

Forward
Observed data - y simulation

1§
o

“ 'l)l

Seismic response

Rocks bulk modulus »- —

CO; saturation

E—szi(m ; K)

Permeability = Proiaa(;;;ion
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FwiFlow.jl: Fully Nonlinear Implicit Schemes

@ The governing equation is a nonlinear PDE

0 .
5(455#)/) + V- (pivi) = piqi, =12
$1+S =1
Kkri .
vi=———(VPi—gpiVZ), =12
i
ko SLl
k l(sl) — rl~1
' sh 4 gsh
sk
kro(S1) = 2

sk + ES)?

@ For stability and efficiency, implicit methods are the industrial
standards.

m2(52n+1)

my(S5)

k,,‘(S)

B(SEH — ) = V- (ma(S5THKVE) At = <q5 +af ) At mi(s) = S

@ It is impossible to express the numerical scheme directly in an AD
framework. Physics constrained learning is used to enhance the AD
framework for computing gradients.
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FwiFlow.jl: Showcase

@ Task 1: Estimating the permeability from seismic data
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@ Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

fi(51;01) = kr1(S1) £(51; 02) = kr2(S1)
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FwiFlow.jl: Showcase

@ Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics is history dependent.

Governing Equation o =0 c=5

R N
o —an 7 o g
w77 i
P i T

ADCME
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@ Some Perspectives
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A Parameter/Function Learning View of Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0 (3)
We observe some quantities depending on the solution v and want to
estimate 6.
Expression Description ADCME Solution Note
ey e et
V - (f(x)Vu(x)) =0 Function Inverse Problem Func’t\lizl;raE:IA'\lpe;xzir:'lator f(x) & fu(x)
V - (f(u)Vu(x)) =0 Relation Inverse Problem Physiczeéi:::!r:iiaerdniEegarning f(u) =~ fu(u)
V - (@wVu(x)) =0 Stochastic Inverse Problem Generative Neural Networks @ = fw(Viatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

@ Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

@ Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.
@ The AD technique is not new; it has existed for several decades and many software exists.

The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

© As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.
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A General Approach to Inverse Modeling
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